The Synaptic Plasticity Variability in a Post-traumatic Stress Disorder Model

  • Pengcheng Xiao
  • Lixia Duan
  • Jianzhong SuEmail author
Conference paper
Part of the Advances in Cognitive Neurodynamics book series (ICCN)


In this paper, we study computationally a mathematical model of post-traumatic stress disorder (PTSD). The PTSD is a common symptom resulted from a trauma or a long period of intense stress which leads to abnormal levels of hormonal secretion, especially in Cortisol. As a consequence, the neuronal electric activities also change due to variations in synaptic receptors regulated by hormone levels. We measure the hippocampal plasticity variability computationally through the synaptic spike-timing–dependent plasticity characterized in soma’s calcium current in the neuronal system, and the results provide the evidence of long-term potentiation changes in a Hippocampus model due to PTSD.


Computational modeling study Cortisol-neuron dynamics Post-traumatic stress disorder Synaptic spike-timing–dependent plasticity NMDA and AMPA receptors Calcium current 


  1. 1.
    American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association, Washington, DC (1994)Google Scholar
  2. 2.
    Helzer, J.E., Robins, L.N., McEvoy, L.: Post-traumatic stress disorder in the general population. N. Engl. J. Med. 317, 1630–1634 (1987)PubMedCrossRefGoogle Scholar
  3. 3.
    Sherin, J.E., Nemeroff, C.B.: Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin. Neurosci. 13(3), 263–278 (2011)PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kim, J.J., Song, E.Y., Kosten, T.A.: Stress effects in the hippocampus: synaptic plasticity and memory. Stress 9, 1–11 (2006)PubMedCrossRefGoogle Scholar
  5. 5.
    McCarthy, J.: Post-traumatic stress disorder in people with learning disability. Adv. Psychiatr. Treat. 7, 163–169 (2001)CrossRefGoogle Scholar
  6. 6.
    Bremner, J.D., Elzinga, B., Schmahl, C., Vermetten, E.: Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog. Brain Res. 167, 171–186 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Heresco-Levy, U., Javitt, D.C.: The role of N-Methyl-D-Aspartate (NMDA) receptor-mediated neurotransmission in the pathophysiology and therapeutics of psychiatric syndromes. Eur. Neuropsychopharmacol. 8, 141–152 (1998)PubMedCrossRefGoogle Scholar
  8. 8.
    Javitt, D.C.: Glutamate as a therapeutic target in psychiatric disorders. Mol. Psychiatry 9, 984–997 (2004)PubMedCrossRefGoogle Scholar
  9. 9.
    Reul, J.M., Nutt, D.J.: Glutamate and cortisol—a critical confluence in PTSD. J. Psychopharmacol. 22, 469–472 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    Benita, J.M., Guillamon, A., Deco, G., Sanchez-Vives, M.V.: Synaptic depression and slow oscillatory activity in a biophysical network model of the cerebral cortex. Front Comput. Neurosci. 6, 64 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rubin, J.E., Gerkin, R.C., Bi, G.Q., Chow, C.C.: Calcium time course as a signal for spike-timing–dependent plasticity. J. Neurophysiol. 93, 2600–2613 (2005)PubMedCrossRefGoogle Scholar
  12. 12.
    Sriram, K., Rodriguez-Fernandez, M., Doyle, F.J.: Modeling Cortisol dynamics in the neuro-endocrine axis distinguishes normal, depression, and Post-traumatic Stress Disorder (PTSD) in humans. PLoS Comput. Biol. 8, e1002379 (2012)Google Scholar
  13. 13.
    Yehuda, R., Southwick, S., Krystal, J., Bremner, D., Charney, D., Mason, J.W.: Enhanced suppression of cortisol following dexamethasone administration in posttraumatic-stress-disorder. Am. J. Psychiatry 150, 83–86 (1993)PubMedCrossRefGoogle Scholar
  14. 14.
    Yehuda, R., Teicher, M., Trestman, R., Levengood, R., Siever, L.: Cortisol regulation in posttraumatic stress disorder and major depression: A chronobiological analysis. Biol. Psychiatry 40, 79–88 (1996)PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta, S., Aslakson, E., Gurbaxani, B.M., Vernon, S.D.: Inclusion of the glucocorticoid receptor in a hypothalamic pituitary adrenal axis model reveals bistability. Theor. Biol. Med. Model 4, 8 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Vinther, F., Andersen, M., Ottesen, J.T.: The minimal model of the hypothalamic-pituitary adrenal axis. J. Math. Biol. 63, 663–690 (2011)PubMedCrossRefGoogle Scholar
  17. 17.
    Poirazi, P., Brannon, T., Mel, B.W.: Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987 (2003)PubMedCrossRefGoogle Scholar
  18. 18.
    Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nat. Neurosci. Suppl. 3, 1178–1183 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of MathematicsNorth China University of TechnologyBeijingChina

Personalised recommendations