Learning

Creation or Re-Creation? From Constructivism to the Theory of Didactical Situations
  • Jarmila Novotna
  • Bernard Sarrazy
Part of the Advances in Creativity and Giftedness book series (ACAG, volume 25)

Abstract

The idea of the child “creator” is historically associated with its activity and with “construction” of connaissances and savoirs2. These ideas developed within pedagogical streams, namely in active pedagogy, and their boom was brought about with the emergence of constructivism especially with Piaget. In fact, Piaget’s theory triggered a fundamental breakdown in the conceptions of learning seen as adaptation to the environment and of knowledge seen as a dynamic process of adaptation between the subject’s schemes and the object of the knowledge.

Keywords

Mathematical Education Implicit Attitude Target Problem Didactical Contract Pedagogical Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebli, H. (1966). Didactique psychologique: Application à la didactique de la psychologie de Jean Piaget. [ The psychological didactics: Application of Jean Piaget’s psychology to didactics.] Neuchâtel: Delachaux et Niestlé.Google Scholar
  2. Baker, G. P., & Hacker, P. M. S. (1986). Scepticism, rules and language. Oxford, England: Blackwell.Google Scholar
  3. Beth, E. W., & Piaget, J. (1974). Mathematical epistemology and psychology. (W. Mays, Trans.). Dordrecht, The Netherlands: Reidel.CrossRefGoogle Scholar
  4. Bourdieu, P. (1984). Le sens pratique. [ Practical sense.] Paris, France: Les Editions de Minuit.Google Scholar
  5. Bringuier, J. C. (1980). Conversations with Jean Piaget. Chilcago, IL: University of Chicago Press.Google Scholar
  6. Brousseau, G. (1986). Théorisation des phénomènes d’enseignement des mathématiques. [ Theorisation of phenomena of mathematical education.] Thèse pour le doctorat d’état, Université de Bordeaux I.Google Scholar
  7. Brousseau, G. (1997). Theory of didactical situations in mathematics 1970–1990. Dordrecht, The Netherlands : Kluwer Academic.Google Scholar
  8. Brousseau, G., & Sarrazy, B. (2002). Glossaire de quelques concepts de la théorie des situations didactiques en mathématiques. [Glossary of terms used in didactique]. (V. Warfield, Trans.). Bordeaux: DAEST, Université Bordeaux 2.Google Scholar
  9. Bureš, J., & Hrabáková, H. (2008). Création d’énoncés de problèmes par les élèves. [ Pupils’ problem posing.] In XXXVe Colloque national des formateurs de professeurs des écoles en mathématiques. Enseigner les mathématiques à l’école: où est le problème? Bordeaux-Bombannes.Google Scholar
  10. Chopin, M. P. (2011). Le temps de l’enseignement. L’avancée du savoir et la gestion des hétérogénéités dans la classe. [Time of education. Development of knowledge and regulation of heterogeneities in the class.] Rennes, France: Presses Universitaires de Rennes.Google Scholar
  11. Freud, S. (1962). Three essays on the Theory of Sexuality. (J. Strachey, Trans.). New York, NY: Basic Books.Google Scholar
  12. Giroux, J. (2008). Conduites atypiques d’élèves du primaire en difficulté d’apprentissage. [ Atypical behaviour of pupils with learning difficulties.] Recherches en didactique des mathématiques, 28, 9–62.Google Scholar
  13. Kant, E. (1991). Qu’est-ce que les Lumières? [In Kant, E., Vers la paix perpétuelle. Que signifie s’orienter dans la pensée? Qu’est-ce que les Lumières? [What is enlightenment?] (J. F. Poirier and F. Proust, Trans.). Available from http://www.answers.com/topic/what-is-enlightenment-1.
  14. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: University of Chicago Press.Google Scholar
  15. Marchive, A. (2008). La pédagogie à l’épreuve de la didactique: Approche historique, recherches empiriques et perspectives théoriques. [Pedagogy confronted with didactics: Historical approach, empirical research and theoretical perspectives]. Rennes, France: Presses Universitaires de Rennes.Google Scholar
  16. Novotná, J., & Hošpesová, A. (2009). Effet Topaze et liaisons dans les pratiques des professeurs de mathématiques. [ Topaze effect in mathematics teachers’ practices. ] In Congrès Education mathématique Francophone (EMF 2009). Dakar. Available from http://fastef.ucad.sn/EMF2009/colloque.htm.
  17. Rousseau, J.-J. (1991). Emile or on education. New York, NY: Penguin. Available from http://www.ilt.columbia.edu/pedagogies/rousseau/Contents2.html.Google Scholar
  18. Russell, B. (1917). Mysticism and logic and other essays. London, England: George Allen & Unwin.CrossRefGoogle Scholar
  19. Sarrazy, B. (1995). Le contrat didactique. [ Didactical contract.] [Note de synthèse.] Revue Française de Pédagogie, 112, 85–118.Google Scholar
  20. Singh, S. (2002). Fermat’s last theorem. London, England: Fourth Estate.Google Scholar
  21. Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. In T.P. Carpenter, J.M. Moser, & T.A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 39–59). Hillsdale NJ: Erlbaum.Google Scholar

Copyright information

© Sense Publishers 2014

Authors and Affiliations

  • Jarmila Novotna
  • Bernard Sarrazy

There are no affiliations available

Personalised recommendations