Testing Measurement and Structural Invariance

  • Daniel A. Sass
  • Thomas A. Schmitt


Measurement validation in the behavioral sciences is generally carried out in a psychometric modeling framework that assumes unobservable traits/constructs (i.e., latent factors) created from the observed variables (often items measuring that construct) are the variables of interest.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asparouhov, T., & Muthén, B. O. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438.CrossRefGoogle Scholar
  2. Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality and Individual Differences, 42, 815–824.CrossRefGoogle Scholar
  3. Barry, C. L., & Finney, S. J. (2009). Does it matter how data are collected? A comparison of testing conditions and the implications for validity. Research & Practice in Assessment, 3, 1–15.Google Scholar
  4. Borsboom, D. (2006). When does measurement invariance matter? Medical Care, 44(11), 176–181.CrossRefGoogle Scholar
  5. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, N.J.: Guiford Press.Google Scholar
  6. Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111–150.CrossRefGoogle Scholar
  7. Byrne, B. M. (2012). Structural equation modeling with Mplus: Basic concepts, applications, and programming. New York: Routledge.Google Scholar
  8. Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychological Bulletin, 105, 456–466.CrossRefGoogle Scholar
  9. Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14, 464–504.CrossRefGoogle Scholar
  10. Chen, F. F. (2008). What happens if we compare chopsticks with forks? The impact of making inappropriate comparisons in cross-cultural research. Journal of Personality and Social Psychology, 95, 1005–1018.CrossRefGoogle Scholar
  11. Chen, F. F., Sousa, K. H., & West, S. G. (2005). Testing measurement invariance of second-order factor models. Structural Equation Modeling, 12, 471–492.CrossRefGoogle Scholar
  12. Cheung, G. W., & Lau, R. S. (in press). A direct comparison approach for testing measurement invariance. Organizational Research Methods.Google Scholar
  13. Cheung, G. W., & Rensvold, R. B. (1999). Testing factorial invariance across groups: A reconceptualization and proposed new method. Journal of Management, 25, 1–27.CrossRefGoogle Scholar
  14. Cheung, G. W., & Rensvold, R. B. (2000). Assessing extreme and acquiescence response sets in crosscultural research using structural equations modeling, Journal of Cross-cultural Psychology, 31, 187–212.CrossRefGoogle Scholar
  15. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255.CrossRefGoogle Scholar
  16. Dimitrov, D. M. (2010). Testing for factorial invariance in the context of construct validation. Measurement and Evaluation in Counseling and Development, 43, 121–149.CrossRefGoogle Scholar
  17. French, B. F., & Finch, W. H. (2008). Multigroup confirmatory factor analysis: Locating the invariant referent sets. Structural Equation Modeling, 15, 96–113.CrossRefGoogle Scholar
  18. Hambleton, R. K., Merenda, P., & Spielberger C. (Eds.). (2005). Adapting educational and psychological tests for cross-cultural assessment. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  19. Hancock, G. R., Lawrence, F. R., & Nevitt, J. (2000). Type I error and power of latent mean methods and manova in factorially invariant and noninvariant latent variable systems. Structural Equation Modeling, 7, 534–556.CrossRefGoogle Scholar
  20. Horn J. L., McArdle J. J. (1992). A practical and theoretical guide to measurement invariance in aging research. Experimental Aging Research, 18, 117–144.CrossRefGoogle Scholar
  21. Hu & Bentler (1999). Cutoff criteria for fit indexes in covariance structure analysis: Coventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.Google Scholar
  22. Hui, E. K. P., & Chan, D. W. (1996). Teacher stress and guidance work in Hong Kong secondary school teachers. British Journal of Guidance and Counseling, 24, 199–211.CrossRefGoogle Scholar
  23. Kamata, A., & Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory models. Structural Equation Modeling, 15, 136–153.CrossRefGoogle Scholar
  24. Little, T. D., Slegers, D. W., & Card, N. A. (2006). A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. Structural Equation Modeling, 13, 59–72.CrossRefGoogle Scholar
  25. Lubke, G. H., & Muthén, B. O. (2004). Applying multi-group confirmatory factor models for continuous outcomes to Likert scale data complicates meaningful group comparisons. Structural Equation Modeling, 11, 514–534.CrossRefGoogle Scholar
  26. Marsh, H. W. (1985). The structure of masculintiy/feminity: An application of confirmatory factor analysis to higher-order factor structures and factorial invariance. Multivariate Behavioral Research, 20, 427–449.CrossRefGoogle Scholar
  27. Marsh, H. W., Hau, K. T., & Wen, Z. L. (2004). In search of golden rules: Comment on hypothesis testing approaches to setting cutoff values for fit indexes and dangers in overgeneralising Hu & Bentler (1999) findings. Structural Equation Modeling, 11, 320–341.CrossRefGoogle Scholar
  28. Marsh, H. W., & Hocevar, D. (1985). Application of confirmatory factor analysis to the study of selfconcept: First- and higher order factor models and their invariance across groups. Psychological Bulletin, 97, 562–582.CrossRefGoogle Scholar
  29. Marsh, H. W., Liem, G. A., Martin, A. J., Nagengast, B., & Morin, A. J. S. (2011). Methodologicalmeasurement fruitfulness of Exploratory Structural Equation Modeling (ESEM): New approaches to key substantive issues in motivation and engagement. Journal of Psychoeducational Assessment, 29, 322–346.CrossRefGoogle Scholar
  30. Marsh, H. W., Lüdtke, O., Muthén, B., Asparouhov, T., Morin, A. J. S., Trautwein, U., & Nagengast, B. (2010). A new look at the big-five factor structure through exploratory structural equation modeling. Psychological Assessment, 22, 471–491.CrossRefGoogle Scholar
  31. Marsh, H. W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A. J. S., & Trautwein, U. (2009). Exploratory structural equation modeling, integrating CFA and EFA: Applications to students’ evaluations of university teaching. Structural Equation Modeling, 16, 439–476.CrossRefGoogle Scholar
  32. Martin, N. K., & Sass, D. A. (2010). Construct validation of the Behavior and Instructional Management Scale. Teaching and Teacher Education, 26, 1124–1135.CrossRefGoogle Scholar
  33. Martin, N. K., Sass, D. A., & Schmitt, T. A. (2012). Teacher efficacy in student engagement, instructional management, student stressors, and burnout: A theoretical model using in-class variables to predict teachers’ intent-to-leave. Teaching and Teacher Education. 28, 546–559.CrossRefGoogle Scholar
  34. Maslach, C., Jackson, S. E. Leiter, M. P. (1996). Maslach Burnout Inventory Manual, 3rd Ed. Mountain View, CA.: CPP, Inc.Google Scholar
  35. MacCallum, R. C. , Roznowski, M. & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111, 490–504.CrossRefGoogle Scholar
  36. McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodnessof-fit. Psychological Bulletin, 107, 247–255.CrossRefGoogle Scholar
  37. McDonald, R. P., Seifert, C. F., Lorenzet, S. J., Givens, S., & Jaccard, J. (2002). The effectiveness of methods for analyzing multivariate factorial data. Organizational Research Methods, 5, 255–274.CrossRefGoogle Scholar
  38. McIntosh, C. (2007). Rethinking fit assessment in structural equation modelling: A commentary and elaboration on Barrett (2007). Personality and Individual Differences, 42, 859–857.CrossRefGoogle Scholar
  39. McLaney, M. A., & Hurrell, J. J. (1988). Control, stress, and job satisfaction in Canadian nurses. Work and Stress, 2, 217–224.CrossRefGoogle Scholar
  40. Meade, A. W., & Bauer, D. J. (2007). Power and precision in confirmatory factor analytic tests of measurement invariance. Structural Equation Modeling, 14, 611–635.CrossRefGoogle Scholar
  41. Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of alternative fit indices in tests of measurement invariance. Journal of Applied Psychology, 93, 568–592.CrossRefGoogle Scholar
  42. Meredith, W. (1993). Measurment invariance, factor analysis and factorial invariance. Psychometrika, 58, 525–543.CrossRefGoogle Scholar
  43. Millsap, R. E. (1998). Group differences in regression intercepts: Implications for factorial invariance. Multivariate Behavioral Research, 33, 403–424.CrossRefGoogle Scholar
  44. Millsap, R. E. (2001). When trivial constraints are not trivial: The choice of uniqueness constraints in confirmatory factor analysis. Structural Equation Modeling, 8, 1–17.CrossRefGoogle Scholar
  45. Millsap, R. E., & Kwok, O. (2004). Evaluating the impact of partial factorial invariance on selection in two populations. Psychological Methods, 9, 93–115.CrossRefGoogle Scholar
  46. Millsap, R. E., & Meredith, W. (2007). Factorial invariance: Historical perspectives and new problems. In R. Cudeck & R. MacCallum (Eds.), Factor analysis at 100 (pp. 131–152). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  47. Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research, 39, 479–515.CrossRefGoogle Scholar
  48. Muthén, L. K., & Muthén, B. O. (1998–2010). Mplus User’s Guide. 6th Ed. Los Angeles, CA: Muthén & Muthén.Google Scholar
  49. Rhemtulla, M., Brosseau-Liard, P., & Savalei, V. (2010). How many categories is enough to treat data as continuous? A comparison of robust continuous and categorical SEM estimation methods under a range of non-ideal situations. Retrieved from Scholar
  50. Saris, W. E., Satorra, A., & van der Veld, W. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling, 16, 561–582.CrossRefGoogle Scholar
  51. Sass, D. A., Schmitt, T. A., & Marsh, H. W. (in press). Evaluating model fit with ordered categorical data within a measurement invariance framework: A comparison of estimators. Structural Equation ModelingGoogle Scholar
  52. Selig, J. P., Card, N. A., & Little, T. D. (2008). Latent variable structural equation modeling in crosscultural research: Multigroup and multilevel approaches. In F. J. R. van de Vijver, D. A. van Hemert & Y. Poortinga (Eds.) Individuals and Cultures in Multi-level Analysis. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  53. Saris, W. E., Satorra, A., & van der Veld, W. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling, 16, 561–582.CrossRefGoogle Scholar
  54. Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507–514.CrossRefGoogle Scholar
  55. Satorra, A., & Bentler, P. M. (2010). Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika, 75, 243–248.CrossRefGoogle Scholar
  56. Steiger, J. H. (2002). When constraints interact: A caution about reference variables, identification constraints, and scale dependencies in structural equation modeling. Psychological Methods, 7, 210–227.CrossRefGoogle Scholar
  57. Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–69.CrossRefGoogle Scholar
  58. Van de Vijver, F. J. R., & Leung, K. (2000). Methodological issues in psychological research on culture. Journal of Cross-Cultural Psychology, 31(1), 33–35.CrossRefGoogle Scholar
  59. Widaman, K. F., & Reise, S. P. (1997). Exploring the measurement invariance of psychological instruments: Applications in the substance use domain. In K. J. Book Chapter Bryant, M. Windle, & S. G. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 281–324). Washington, DC: American Psychological Association.Google Scholar
  60. Yu, C. Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Doctoral dissertation, University of California, Los Angeles.Google Scholar
  61. Yuan, K. H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. In Sobel, M. E., & Becker, M. P. (Eds.), Sociological methodology 2000 (pp. 165–200). Washington, D.C.: ASA.Google Scholar

Copyright information

© Sense Publishers 2013

Authors and Affiliations

  • Daniel A. Sass
  • Thomas A. Schmitt

There are no affiliations available

Personalised recommendations