Understanding the Physical World: Teacher and Pupil Attitudes Towards Science and Technology

  • Charlotte Van Cleynenbreugel
  • Veerle De Winter
  • Evelien Buyse
  • Ferre Laevers
Part of the International Technology Education Studies book series (ITES, volume 9)


In this study, an intervention was set up aimed at improving both teachers’ attitudes and competences in relation to science and technology, and teaching these subjects. The present report focuses specifically on teacher attitudes and how these evolve throughout the school year. A pre- and posttest design was used to evaluate teacher attitudes in relation to science and technology (and teaching these subjects) before and after the intervention trajectory. Additionally, children’s attitudes were investigated to explore the relations between teachers’ attitudes (and how these evolve) on the one hand, and (changes in) their pupils’ attitudes on the other. At last, we explored the intervention inputs for critical tools/aids to change attitudes.


Attitude Scale Trajectory Group Attitude Score Posttest Score Intervention Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abulude, F. (2009). Students’ attitudes towards chemistry in some selected secondary schools in akure south local government area, Ondo State. Post graduate thesis, the national teachers institute, Kaduna, Nigeria. Retrieved from
  2. Ajzen, I. (2005). Attitudes, personality and behavior. Berkshire, United Kingdom: Open University.Google Scholar
  3. Barak, M. & Zadok, Y. (2009). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19, 289–307.CrossRefGoogle Scholar
  4. Chen, S. (2006). Development of an instrument to assess views on nature of science and attitudes toward teaching science. Science Education, 90, 803–819.CrossRefGoogle Scholar
  5. Cheung, D. (2009). Students’ attitudes chemistry lessons: The interaction effect between grade level and gender. Research in Science Education, 39, 75–91.CrossRefGoogle Scholar
  6. De Winter, V., & Van Cleynenbreugel, C. (2010). Leerkrachtprofielen en onderwijs in wetenschap en techniek in het basisonderwijs: Werkzame bestanddelen voor deskundigheidsbevordering en attitudeverandering (VTB-Pro aanvullend onderzoek). [Teacher profiles and education in science and technology in primary education: Active ingredients to promote professionalism and a positive change in attitudes (VTB-Pro complementary research).] Internal report (draft), Centre for Experiential Education, Catholic University Leuven, Belgium.Google Scholar
  7. Ho, L., & Kuo, T. (2010). How can one amplify the effect of e-learning? An examination of high-tech employees’ computer attitude and flow experience. Computers in Human Behavior, 26, 23–31.CrossRefGoogle Scholar
  8. Hox, J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ: Erlbaum.Google Scholar
  9. Jalil, P.A., Sbeih, A.M.Z., Boujettif, M., & Barakat, R. (2009). Autonomy in science education: a practical approach in attitude shifting towards science learning. Journal of Science Education and Technology, 18, 476–486.CrossRefGoogle Scholar
  10. Jarvis, T. (2006). Guide for the seed city trainer. Barcelona, Spain: P.A.U. Education.Google Scholar
  11. Joukes, G. (2010). Meiden en wetenschap & techniek: Van tegenpolen tot aantrekkingskracht. [Girls and science & technology: From opposites to attraction.] Maarssen, The Netherlands: Kaldenbach Grafische Producties.Google Scholar
  12. Kemmers, P., Klein Tank, M., & Van Graft, M. (2007). Onderzoekend en ontwerpend leren bij natuur en techniek: Evalueren van brede ontwikkeling van leerlingen in open onderwijsvormen.[Inquirybased learning and learning by design in science and technology: Evaluation of the broad development of pupils in open education forms.] Enschede, The Netherlands: Institute for Curriculum Development (SLO).Google Scholar
  13. Laevers, F. (1993). Deep level learning: an exemplary application on the area of physical knowledge. European Early Childhood Research Journal, 1, 53–68.CrossRefGoogle Scholar
  14. Laevers, F. (1998). Understanding the world of objects and of people: Intuition as the core element of deep level learning. International Journal of Educational Research, 29, 69–85.CrossRefGoogle Scholar
  15. Laevers, F. (2005). The curriculum as means to raise the quality of ECE. Implications for policy. European Early Childhood Education Research Journal, 13, 17–30.CrossRefGoogle Scholar
  16. Laevers, F. (2006a). Onderwijs op een nieuwe leest. Een reconstructie van de actuele paradigma-shift. [A new approach for education. A reconstruction of the actual paradigma-shift]. In: F. Laevers, en E. Bertrands (Eds.), Draagkracht geven. Uitkomst voor de toekomst. (pp.5–24). Leuven: CEGO.Google Scholar
  17. Laevers, F. (2006b). Kijkwijzer voor een Procesgerichte Analyse van Onderwijsleersituaties. [Monitoring system for a process-oriented analysis of learning situations in education]. Leuven: Centrum voor Ervaringsgericht Onderwijs.Google Scholar
  18. Lewis, T. (2009). Creativity in technology education: providing children with glimpses of their inventive potential. International Journal of Technology and Design Education, 19, 255–268.CrossRefGoogle Scholar
  19. Oberon (2009). Een selectie uit de tussenrapportage effectstudie VTB-Pro. Schooljaar 2008/09. [A selection from the interim rapport effectstudy VTB-Pro. 2008/09]. Utrecht, The Netherlands: Platform Bèta Techniek.Google Scholar
  20. Ogbuehi, P., & Fraser, B. (2007). Learning environment, attitudes and conceptual development associated with innovative strategies in middle-school mathematics. Learning Environments Research, 10, 101–114.CrossRefGoogle Scholar
  21. Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of Educational Research, 66, 543– 578.Google Scholar
  22. Pell, A., & Jarvis, T. (2003). Developing attitude to science education scales for use with primary teachers. International Journal of Science Education, 25, 1273–1295.CrossRefGoogle Scholar
  23. Shrigley, R., & Johnson, T. (1974). The attitude of in service elementary teachers toward science. School Science and Mathematics, 74, 437–446.CrossRefGoogle Scholar
  24. Sidawi, M.M. (2009). Teaching science through designing technology. International Journal of Technology and Design Education, 19(3), 269–287.CrossRefGoogle Scholar
  25. Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modelling. London: Sage.Google Scholar
  26. Tschannen-Moran, M., Woolfolk Hoy, A., & Hoy, W. K. (1998). Teacher efficacy: Its meaning and measure. Review of Educational Research, 68, 202–248.Google Scholar
  27. Van Graft, M., & Kemmers, P. (2007). Onderzoekend en ontwerpend leren bij Natuur en Techniek. [Inquiry-based learning and learning by design in science and technology]. The Hague, The Netherlands: Platform Bèta Techniek.Google Scholar
  28. Vazquez-Alonso, A., Manassero-Mas, M. A., & Acevedo-Diaz, J. A. (2006). An analysis of complex multiple choice science technology items: Methodological development and preliminary results. Science Education, 90, 681–706.CrossRefGoogle Scholar
  29. Walma van der Molen, J. (2007). Eindrapportage VTB attitude monitor. De ontwikkeling van een attitude-instrument op het gebied van wetenschap en techniek voor leerlingen in het basisonderwijs.[Final report VTB attitude monitor. The development of an attitude instrument on the domain of science and technology for pupils in primary education.] The Hague, The Netherlands: Platform Bèta Techniek.Google Scholar
  30. Walma van der Molen, J. (2009). Wat vinden leraren basisonderwijs van wetenschap en techniek? [What do primary teachers think of science and technology?]. In H. van Keulen & J. Walma van der Molen (Eds.), Onderzoek naar wetenschap en techniek in het Nederlandse basisonderwijs [Research into science and technology in Dutch primary education] (pp. 157–163). The Hague, The Netherlands: Platform Bèta Techniek.Google Scholar
  31. Walma van der Molen, J., Lange, J. de, & Kok, J. (2009). Theoretische uitgangspunten bij de professionalisering van leraren basisonderwijs op het gebied van wetenschap en techniek. [Theoretical considerations for the professionalisation of primary school teachers in science and technology] In H. van Keulen & J. Walma van der Molen (Eds.), Onderzoek naar wetenschap en techniek in het Nederlandse basisonderwijs [Research into science and technology in Dutch primary education] (pp. 29-40). The Hague, The Netherlands: Platform Bèta Techniek.Google Scholar

Copyright information

© Sense Publishers 2011

Authors and Affiliations

  • Charlotte Van Cleynenbreugel
  • Veerle De Winter
  • Evelien Buyse
  • Ferre Laevers
    • 1
  1. 1.Katholieke Universiteit LeuvenBelgium

Personalised recommendations