Skip to main content

Abstract

Semiconductor superlattice frequency multipliers have emerged as a nonlinear medium able to generate radiation in a wide frequency range. This property facilitates the potential of sources suitable for sensing and spectroscopy applications. In this study, we further investigate the consequences on harmonic generation in a superlattice multiplier after excitation by an input signal oscillating at different frequencies. Here we provide a rigorous description of our theoretical model including a semiclassical Boltzmann approach to nonlinear miniband transport and non-equilibrium Green’s functions calculations treating scattering processes under forward and reverse bias. To fully exploit the features of this radiation source, we focus on the effects of elastic scattering and systematic imperfections in the superlattice structure which lead to asymmetric current flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97

    Article  ADS  Google Scholar 

  2. Kampfrath T, Tanaka K, Nelson Keith A (2013) Resonant and nonresonant control over matter and light by intense terahertz transients. Nat Photonics 7:680–690

    Article  ADS  Google Scholar 

  3. Jepsen PU, Cooke DG, Koch M (2010) Terahertz spectroscopy and imaging-modern techniques and applications. Laser Photon Rev 5:124–166

    Article  ADS  Google Scholar 

  4. Pereira MF (2015) TERA-MIR radiation: materials, generation, detection and applications II. Opt Quant Electron 47:815–820

    Article  Google Scholar 

  5. Pereira MF, Shulika O (2014) Terahertz and mid infrared radiation: detection of explosives and CBRN (using terahertz). NATO science for peace and security series-B: physics and biophysics. Springer, Dordrecht

    Book  Google Scholar 

  6. Pereira MF (1995) Analytical solutions for the optical absorption of superlattices. Phys Rev B 52:1978–1983

    Article  ADS  Google Scholar 

  7. Apostolakis A, Awodele MK, Alekseev KN, Kusmartsev FV, Balanov AG (2017) Nonlinear dynamics and band transport in a superlattice driven by a plane wave. Phys Rev E 95(6):062203

    Article  ADS  MathSciNet  Google Scholar 

  8. Wacker A (2002) Semiconductor superlattices: a model system for nonlinear transport. Phys Rep 357:1–111

    Article  ADS  MATH  Google Scholar 

  9. Pereira MF, Winge D, Wacker A, Zubelli JP, Rodrigues AS, Anfertev V, Vaks V (2017) Theory and measurements of harmonic generation in semiconductor superlattices with applications in the 100 GHz to 1 THz range. Phys Rev B 96:045306

    Article  ADS  Google Scholar 

  10. Eisele H, Li L, Linfield EH (2018) High-perfomance GaAs/AlAs superlattice electronic devices in oscillators at frequencies 100-320 GHz. Appl Phys Lett 112:172103

    Article  ADS  Google Scholar 

  11. Pereira MF, Anfertev V, Zubelli JP, Vaks V (2017) THz generation by GHz multiplication in superlattices. J Nanophotonics 11:046022

    Article  ADS  Google Scholar 

  12. Winnerl S, Schomburg E, Brandl S, Kus O, Renk KF, Wanke M, Allen S, Ignatov A, Ustinov V, Zhukov A, Kopev P (2000) Mup doubling and tripling of terahertz radiation in a GaAs/AlAs superlattice due to frequency modulation of Bloch oscillations. Appl Phys Lett 77:1762

    Article  Google Scholar 

  13. Klappenberger F, Renk KF, Renk P, Rieder B, Koshurinov YI, Pavelev DG (2004) Semiconductor-superlattice frequency multiplier for generation of submillimeter waves. Appl Phys Lett 84:3924

    Article  ADS  Google Scholar 

  14. Apostolakis A, Pereira MF (2019) Controlling the harmonic conversion efficiency in semiconductor superlattices by interface roughness design. AIP Adv 9:015022

    Article  ADS  Google Scholar 

  15. Apostolakis A, Pereira MF (2019) Numerical studies of superlattice multipliers performance. Quantum Sens Nano Electron Photonics XVI:109262G

    Google Scholar 

  16. Ignatov AA, Dodin EP, Shashkin VI (1991) Transient response theory of semiconductor superlattices: connection with Bloch oscillations. Modern Phys Lett B 05(16):1087–1094

    Article  ADS  Google Scholar 

  17. Ignatov AA, Shashkin VI (1983) A simplified approach to nonlinear HF response theory of superlattice materials. Phys Lett A 94A(3–4):169–172

    Article  ADS  Google Scholar 

  18. Apostolakis A, Pereira MF (2019) Potential and limits of superlattice multipliers coupled to different input power sources. J Nanophotonics 3:1–11

    Article  Google Scholar 

  19. Pereira MF, Anfertev V, Shevchenko Y, Vaks V (2020) Giant controllable gigahertz to terahertz nonlinearities in superlattices. Sci Rep 10:15950

    Article  ADS  Google Scholar 

  20. Wacker A, Jauho AP, Zeuner S, Allen SJ (1997) Sequential tunnelling in doped superlattices: fingerprints of impurity bands and photon-assisted tunnelling. Phys Rev B 56:13268

    Article  ADS  Google Scholar 

  21. Keay BJ, Zeuner S, Allen SJ, Maranowski KD, Gossard AC, Bhattacharya U, Rodwell MJW (1995) Dynamic localization, absolute negative conductance, and stimulated, multiphoton emission in sequential resonant tunneling semiconductor superlattices. Phys Rev Lett 75:4102

    Article  ADS  Google Scholar 

  22. Holthaus M (1992) Collapse of minibands in far-infrared irradiated superlattices. Phys Rev Lett 69:351

    Article  ADS  Google Scholar 

  23. Pereira MF, Koch SW, Chow WW (1991) Many-body effects in the gain spectra quantum-wells. Appl Phys Lett 59:2941–2943

    Article  ADS  Google Scholar 

  24. Oriaku CI, Pereira MF (2017) Analytical solutions for semiconductor luminescence including Coulomb with applications to dilute bismides. J Opt Soc Am B 34:321–328

    Article  ADS  Google Scholar 

  25. Pereira MF (2018) Analytical expressions for numerical characterization of semiconductors per comparison with luminescence. Materials 11:1–15

    Google Scholar 

  26. Grempel H, Diesel A, Ebeling W, Gutowski J, SchĂĽll K, Jobst B, Hommel D, Pereira MF, Henneberger K (1996) High-density effects, stimulated emission, and electrooptical properties of ZnCdSe/ZnSe single quantum wells and laser diodes. Phys Status Solidi B 194:199

    Article  ADS  Google Scholar 

  27. Pereira MF, Binder R, Koch SW (1991) Theory of nonlinear optical absorption in coupled-band quantum wells with many-body effects. Appl Phys Lett 64:279–281

    Article  ADS  Google Scholar 

  28. Pereira MF, Henneberger K (1998) Microscopic theory for the optical properties of coulomb-correlated semiconductors. Phys Status Solidi B 206:477–491

    Article  ADS  Google Scholar 

  29. Chow WW, Pereira MF, Koch SW (1992) Many-body treatment on the modulation response in a strained quantum well semiconductor laser medium. Appl Phys Lett 61:758

    Article  ADS  Google Scholar 

  30. Jin R, Okada K, Khitrova G, Gibbs HM, Pereira MF, Koch SW, Peyghambarian N (1992) Optical nonlinearities in strained-layer InGaAs/GaAs multiple quantum wells. Appl Phys Lett 61:1745

    Article  ADS  Google Scholar 

  31. Pereira MF, Henneberger K (1997) Gain mechanisms and lasing in II-VI compounds. Phys Status Solidi B 202:751–762

    Article  ADS  Google Scholar 

  32. Pereira MF (2018) Analytical expressions for numerical characterization of semiconductors per comparison with luminescence. Materials 11:2

    Article  ADS  Google Scholar 

  33. Pereira MF, Nelander R, Wacker A, Revin DG, Soulby MR, Wilson LR, Cockburn JW, Krysa AB, Roberts JS, Airey RJ (2007) Characterization of intersubband devices combining a nonequilibrium many body theory with transmission with transmission spectroscopy experiments. Sci Mater Electron 18:689

    Article  Google Scholar 

  34. Pereira MF, Tomić S (2011) Intersubband gain without global inversion through dilute nitride band engineering. Appl Phys Lett 98:061101

    Article  ADS  Google Scholar 

  35. Pereira MF, Faragai IA (2014) Coupling of THz radiation with intervalence band transitions in microcavities. Opt Express 22:3439

    Article  ADS  Google Scholar 

  36. Pereira MF (2011) Microscopic approach for intersubband-based thermophotovoltaic structures in the terahertz and mid-infrared. JOSA B 28:2014–2017

    Article  ADS  Google Scholar 

  37. Pereira MF, Schmielau T (2009) Momentum dependent scattering matrix elements in quantum cascade laser transport. Microelectron J 40:869–871

    Article  Google Scholar 

  38. Nelander R, Wacker A, Pereira MF, Revin DG, Soulby MR, Wilson LR, Cockburn JW, Krysa AB, Roberts JS, Airey RJ (2007) Fingerprints of spatial charge transfer in quantum cascade lasers. Appl Phys 102:11314

    Article  Google Scholar 

  39. Pereira MF (2016) The linewidth enhancement factor of intersubband lasers: from a two-level limit to gain without inversion conditions. Appl Phys Lett 109:222102

    Article  ADS  Google Scholar 

  40. Schmielau T, Pereira MF (2009) Nonequilibrium many body theory for quantum transport in terahertz quantum cascade lasers. Appl Phys Lett 95:231111

    Article  ADS  Google Scholar 

  41. Hyart T, Shorokhov AV, Alekseev KN (2007) Theory of parametric amplification in superlattices. Phys Rev Lett 98:220404

    Article  ADS  Google Scholar 

  42. Apostolakis A, Pereira MF (2020) Superlattice nonlinearities for Gigahertz-Terahertz generation in harmonic multi-pliers. Nanophotonics 9(12):3941–3952. https://doi.org/10.1515/nanoph-2020-0155

    Article  Google Scholar 

  43. Pereira MF, Anfertev V, Shevchenko Y, Vaks V (2020) Giant controllable gigahertz to terahertz nonlinearities in superlattices. Sci Rep 10:15950

    Article  ADS  Google Scholar 

  44. Rose TP, Di Gennaro E, Abbate G, Andreone A (2011) Isotropic properties of the photonic band gap in quasicrystals with low-index contrast. Phys Rev B 84:125111

    Article  ADS  Google Scholar 

  45. Savo S, Di Gennaro E, Andreone A (2009) Superlensing properties of one-dimensional dielectric photonic crystals. Opt Express 17:19848–19856

    Article  ADS  Google Scholar 

  46. Di Gennaro E, Morello D, Miletto C, Savo S, Andreone A, Castaldi G, Galdi V, Pierro V (2008) A parametric study of the lensing properties of dodecagonal photonic quasicrystals. Photonics and Nanostruct Fundam Appl 6:60–68

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro F. Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schevchenko, Y., Apostolakis, A., Pereira, M.F. (2021). Recent Advances in Superlattice Frequency Multipliers. In: Pereira, M.F., Apostolakis, A. (eds) Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2082-1_8

Download citation

Publish with us

Policies and ethics