Advertisement

Graphene-Based Metal-Free Catalysis

  • Mattia ScardamagliaEmail author
  • Carla Bittencourt
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

This chapter focuses on the use of doped carbon nanomaterials in catalysis. The availability of carbon nanotubes in the ‘90s and graphene about 10 years later, prompted the development of fundamental research and novel nanotechnologies. We discuss this topic from a point of view that links fundamental surface science to the field of catalysis, in order to present the state of the art. We describe scientific questions that material scientists have faced during these last decades, in particular, we concentrate on the debate over the role that the different nitrogen configurations in the graphene lattice can play in certain catalytic processes.

Keywords

Spectromicroscopy Graphene Catalyst 

References

  1. 1.
    Conway BE, Tilak BV (2002) Electrochim Acta 47:3571–3594. https://doi.org/10.1016/S0013-4686(02)00329-8 CrossRefGoogle Scholar
  2. 2.
    Perivoliotis DK, Tagmatarchis N (2017) Carbon 118:493–510. https://doi.org/10.1016/j.carbon.2017.03.073 CrossRefGoogle Scholar
  3. 3.
    Li S-S, Lv J-J, Teng L-N, Wang A-J, Chen J-R, Feng J-J (2014) ACS Appl Mater Interfaces 6:10549–10555. https://doi.org/10.1021/am502148z CrossRefGoogle Scholar
  4. 4.
    Ma Y, Liu Z, Wang B, Zhu L, Yang J, LI X (2012) New Carbon Mater 27:250–257. https://doi.org/10.1016/S1872-5805(12)60016-X CrossRefGoogle Scholar
  5. 5.
    Rideal EK, Wright WM (1926) J Chem Soc 129:1813–1821. https://doi.org/10.1039/JR9262901813 CrossRefGoogle Scholar
  6. 6.
    Mrha J (1966) Collect Czech Chem Commun 31:715–734. https://doi.org/10.1135/cccc19660715 CrossRefGoogle Scholar
  7. 7.
    Lalande G, Côté R, Guay D, Dodelet JP, Weng LT, Bertrand P (1997) Electrochim Acta 42:1379–1388. https://doi.org/10.1016/S0013-4686(96)00361-1 CrossRefGoogle Scholar
  8. 8.
    Strelko VV, Kuts VS, Thrower PA (2000) Carbon 38:1499–1503. https://doi.org/10.1016/S0008-6223(00)00121-4 CrossRefGoogle Scholar
  9. 9.
    Iijima S, Ichihashi T (1993) Nature 363:603–605. https://doi.org/10.1038/363603a0 ADSCrossRefGoogle Scholar
  10. 10.
    Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Nature 363:605–607. https://doi.org/10.1038/363605a0 ADSCrossRefGoogle Scholar
  11. 11.
    Monthioux M, Kuznetsov VL (2006) Carbon 44:1621–1623. https://doi.org/10.1016/j.carbon.2006.03.019 CrossRefGoogle Scholar
  12. 12.
    Novoselov KS (2004) Science 306:666–669. https://doi.org/10.1126/science.1102896 ADSCrossRefGoogle Scholar
  13. 13.
  14. 14.
    Liu J, Song P, Ning Z, Xu W (2015) Electrocatalysis 6:132–147. https://doi.org/10.1007/s12678-014-0243-9 CrossRefGoogle Scholar
  15. 15.
    Wang D-W, Su D (2014) Energy Environ Sci 7:576. https://doi.org/10.1039/c3ee43463j CrossRefGoogle Scholar
  16. 16.
    Wu Z, Iqbal Z, Wang X (2015) Front. Chem Sci Eng 9:280–294. https://doi.org/10.1007/s11705-015-1524-4 CrossRefGoogle Scholar
  17. 17.
    Matter PH, Ozkan US (2006) Catal Letters 109:115–123. https://doi.org/10.1007/s10562-006-0067-1 CrossRefGoogle Scholar
  18. 18.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760–764. https://doi.org/10.1126/science.1168049 ADSCrossRefGoogle Scholar
  19. 19.
    Qu L, Liu Y, Baek J-B, Dai L (2010) ACS Nano 4:1321–1326. https://doi.org/10.1021/nn901850u CrossRefGoogle Scholar
  20. 20.
    Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K (2013) Nat Commun 4:2390. https://doi.org/10.1038/ncomms3390 ADSCrossRefGoogle Scholar
  21. 21.
    Zhang J, Zhao Z, Xia Z, Dai L (2015) Nat Nanotechnol 10:444–452. https://doi.org/10.1038/nnano.2015.48 ADSCrossRefGoogle Scholar
  22. 22.
    Xue Y, Liu J, Chen H, Wang R, Li D, Qu J, Dai L (2012) Angew Chemie Int Ed 51:12124–12127. https://doi.org/10.1002/anie.201207277 CrossRefGoogle Scholar
  23. 23.
    Adjizian J-J, Leghrib R, Koos A a, Suarez-Martinez I, Crossley A, Wagner P, Grobert N, Llobet E, Ewels CP (2014) Carbon 66:662–673. https://doi.org/10.1016/j.carbon.2013.09.064 CrossRefGoogle Scholar
  24. 24.
    Koós A a, Nicholls RJ, Dillon F, Kertész K, Biró LP, Crossley A, Grobert N (2012) Carbon 50:2816–2823. https://doi.org/10.1016/j.carbon.2012.02.047 CrossRefGoogle Scholar
  25. 25.
    Dai J, Yuan J, Giannozzi P (2009) Appl Phys Lett 95:232105. https://doi.org/10.1063/1.3272008 ADSCrossRefGoogle Scholar
  26. 26.
    Wu J, Pisula W, Müllen K (2007) Chem Rev 107:718–747. https://doi.org/10.1021/cr068010r CrossRefGoogle Scholar
  27. 27.
    Frank IW, Tanenbaum DM, van der Zande AM, McEuen PL (2007) J. Vac. Sci Technol B Microelectron Nanom Struct 25:2558. https://doi.org/10.1116/1.2789446 ADSCrossRefGoogle Scholar
  28. 28.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872 ADSCrossRefGoogle Scholar
  29. 29.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162. https://doi.org/10.1103/RevModPhys.81.109 ADSCrossRefGoogle Scholar
  30. 30.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Nat Mater 6:652–655. https://doi.org/10.1038/nmat1967 ADSCrossRefGoogle Scholar
  31. 31.
    Gierz I, Riedl C, Starke U, Ast CR, Kern K (2008) Nano Lett 8:4603–4607. https://doi.org/10.1021/nl802996s ADSCrossRefGoogle Scholar
  32. 32.
    Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X (2016) Nat Nanotechnol 11:218–230. https://doi.org/10.1038/nnano.2015.340 ADSCrossRefGoogle Scholar
  33. 33.
    Lv R, Chen G, Li Q, McCreary A, Botello-Méndez A, Morozov SV, Liang L, Declerck X, Perea-López N, Cullen DA, Feng S, Elías AL, Cruz-Silva R, Fujisawa K, Endo M, Kang F, Charlier J-C, Meunier V, Pan M, Harutyunyan AR, Novoselov KS, Terrones M (2015) Proc. Natl. Acad. Sci 112:14527–14532. https://doi.org/10.1073/ pnas.1505993112 ADSCrossRefGoogle Scholar
  34. 34.
    Vass EM, Hävecker M, Zafeiratos S, Teschner D, Knop-Gericke A, Schlögl R (2008) J Phys Condens Matter 20:184016. https://doi.org/10.1088/0953-8984/20/18/184016 ADSCrossRefGoogle Scholar
  35. 35.
    Fu Q, Bao X (2017) Chem Soc Rev 46:1842–1874. https://doi.org/10.1039/C6CS00424E CrossRefGoogle Scholar
  36. 36.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Chem Rev 112:6156–6214. https://doi.org/10.1021/cr3000412 CrossRefGoogle Scholar
  37. 37.
    Boukhvalov DW, Katsnelson MI (2008) Nano Lett 8:4373–4379. https://doi.org/10.1021/nl802098g ADSCrossRefGoogle Scholar
  38. 38.
    Su DS, Zhang J, Frank B, Thomas A, Wang X, Paraknowitsch J, Schlög R (2010) Chem Sus Chem 3:169–180. https://doi.org/10.1002/cssc.200900180 CrossRefGoogle Scholar
  39. 39.
    Son Y-W, Cohen ML, Louie SG (2006) Nature 444:347–349. https://doi.org/10.1038/nature05180 ADSCrossRefGoogle Scholar
  40. 40.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Phys Rev B 54:17954–17961. https://doi.org/10.1103/PhysRevB.54.17954 ADSCrossRefGoogle Scholar
  41. 41.
    Enoki T, Kobayashi Y, Fukui K-I (2007) Int Rev Phys Chem 26:609–645. https://doi.org/10.1080/01442350701611991 CrossRefGoogle Scholar
  42. 42.
    Fujii S, Enoki T (2013) Acc Chem Res 46:2202–2210. https://doi.org/10.1021/ar300120y CrossRefGoogle Scholar
  43. 43.
    Jiang D, Sumpter BG, Dai S (2007) J Chem Phys 126:134701. https://doi.org/10.1063/1.2715558 ADSCrossRefGoogle Scholar
  44. 44.
    Deng D, Yu L, Pan X, Wang S, Chen X, Hu P, Sun L, Bao X, Magalhaes-Paniago R, Pimenta MA, Geim AK, Bao XH (2011) Chem Commun 47:10016. https://doi.org/10.1039/c1cc13033a CrossRefGoogle Scholar
  45. 45.
    Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S (2014) Angew Chemie – Int Ed 53:10804–10808. https://doi.org/10.1002/anie.201406695 CrossRefGoogle Scholar
  46. 46.
    Li Z, Cheng Z, Wang R, Li Q, Fang Y (2009) Nano Lett 9:3599–3602. https://doi.org/10.1021/nl901815u ADSCrossRefGoogle Scholar
  47. 47.
    Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin H-J, Yoon S-M, Choi J-Y, Park MH, Yang CW, Pribat D, Lee YH (2009) Adv Mater 21:2328–2333. https://doi.org/10.1002/adma.200803016 CrossRefGoogle Scholar
  48. 48.
    Srivastava D, Susi T, Borghei M, Kari L (2014) RSC Adv 4:15225. https://doi.org/10.1039/c3ra47784c CrossRefGoogle Scholar
  49. 49.
    Scardamaglia M, Aleman B, Amati M, Ewels CP, Pochet P, Reckinger N, Colomer J-F, Skaltsas T, Tagmatarchis N, Snyders R, Gregoratti L, Bittencourt C (2014) Carbon 73:371–381. https://doi.org/10.1016/j.carbon.2014.02.078 CrossRefGoogle Scholar
  50. 50.
    Susi T, Ayala P (2015) Carbon nanomaterials for advanced energy systems. Wiley, Hoboken, pp 133–161. https://doi.org/10.1002/9781118980989.ch4 CrossRefGoogle Scholar
  51. 51.
    Su Y, Zhang Y, Zhuang X, Li S, Wu D, Zhang F, Feng X (2013) Carbon 62:296. https://doi.org/10.1016/j.carbon.2013.05.067 CrossRefGoogle Scholar
  52. 52.
    Podyacheva OY, Ismagilov ZR (2015) Catal Today 249:12–22. https://doi.org/10.1016/j.cattod.2014.10.033 CrossRefGoogle Scholar
  53. 53.
    Wang H, Maiyalagan T, Wang X (2012) ACS Catal 2:781–794. https://doi.org/10.1021/cs200652y CrossRefGoogle Scholar
  54. 54.
    Gebhardt J, Koch RJ, Zhao W, Höfert O, Gotterbarm K, Mammadov S, Papp C, Görling A, Steinrück H-P, Seyller T (2013) Phys Rev B 87:155437. https://doi.org/10.1103/PhysRevB.87.155437 ADSCrossRefGoogle Scholar
  55. 55.
    Agnoli S, Favaro M (2016) J Mater Chem A 00:1–24. https://doi.org/10.1039/C5TA10599D CrossRefGoogle Scholar
  56. 56.
    Ferrighi L, Trioni MI, Di Valentin C (2015) J Phys Chem C 119:150305145047002. https://doi.org/10.1021/jp512522m CrossRefGoogle Scholar
  57. 57.
    Huang H, Zhu J, Zhang W, Tiwary CS, Zhang J, Zhang X, Jiang Q, He H, Wu Y, Huang W, Ajayan PM, Yan Q (2016) Chem Mater 28:1737–1745. https://doi.org/10.1021/acs.chemmater.5b04654 CrossRefGoogle Scholar
  58. 58.
    Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) ACS Nano 6:205–211. https://doi.org/10.1021/nn203393d CrossRefGoogle Scholar
  59. 59.
    Susi T, Hardcastle TP, Hofsäss H, Mittelberger A, Pennycook TJ, Mangler C, Drummond-Brydson R, Scott AJ, Meyer JC, Kotakoski J (2017) 2D Mater 4:021013. https://doi.org/10.1088/2053-1583/aa5e78 CrossRefGoogle Scholar
  60. 60.
    Xue Y, Wu B, Liu H, Tan J, Hu W, Liu Y (2014) Phys Chem Chem Phys 16:20392–20397. https://doi.org/10.1039/c4cp02935f CrossRefGoogle Scholar
  61. 61.
    Yan J-A, Chou MY (2010) Phys Rev B 82:125403. https://doi.org/10.1103/PhysRevB.82.125403 ADSCrossRefGoogle Scholar
  62. 62.
    Balog R, Andersen M, Jørgensen B, Sljivancanin Z, Hammer B, Baraldi A, Larciprete R, Hofmann P, Hornekær L, Lizzit S (2013) ACS Nano 7:3823–3832. https://doi.org/10.1021/nn400780x CrossRefGoogle Scholar
  63. 63.
    Scheffler M, Haberer D, Petaccia L, Farjam M, Schlegel R, Baumann D, Hänke T, Grüneis A, Knupfer M, Hess C, Büchner B (2012) ACS Nano 6:10590–10597. https://doi.org/10.1021/nn303485c CrossRefGoogle Scholar
  64. 64.
    Poh HL, Pumera M (2015) Chem Electro Chem 2:190–199. https://doi.org/10.1002/celc.201402307 CrossRefGoogle Scholar
  65. 65.
    Struzzi C, Scardamaglia M, Hemberg A, Petaccia L, Colomer J-F, Snyders R, Bittencourt C (2015) Beilstein J Nanotechnol 6:2263–2271. https://doi.org/10.3762/bjnano.6.232 CrossRefGoogle Scholar
  66. 66.
    Struzzi C, Scardamaglia M, Reckinger N, Colomer J-F, Sezen H, Amati M, Gregoratti L, Snyders R, Bittencourt C (2017) Nano Res 10:3151–3163. https://doi.org/10.1007/s12274-017-1532-4 CrossRefGoogle Scholar
  67. 67.
    Struzzi C, Sezen H, Amati M, Gregoratti L, Reckinger N, Colomer J, Snyders R, Bittencourt C, Scardamaglia M (2017) Appl Surf Sci 422:104–110. https://doi.org/10.1016/j.apsusc.2017.05.258 ADSCrossRefGoogle Scholar
  68. 68.
    Rasool HI, Song EB, Mecklenburg M, Regan BC, Wang KL, Weiller BH, Gimzewski JK (2011) J Am Chem Soc 133:12536–12543. https://doi.org/10.1021/ja200245p CrossRefGoogle Scholar
  69. 69.
    Scardamaglia M, Struzzi C, Osella S, Reckinger N, Colomer J-F, Petaccia L, Snyders R, Beljonne D, Bittencourt C (2016) 2D Mater. 3:011001. https://doi.org/10.1088/2053-1583/3/1/011001. CrossRefGoogle Scholar
  70. 70.
    Scardamaglia M, Struzzi C, Aparicio Rebollo FJ, De Marco P, Mudimela PR, Colomer J-F, Amati M, Gregoratti L, Petaccia L, Snyders R, Bittencourt C (2015) Carbon 83:118–127. https://doi.org/10.1016/j.carbon.2014.11.009 CrossRefGoogle Scholar
  71. 71.
    Yu L, Pan X, Cao X, Hu P, Bao XJ (2011) Catalogue 282:183–190. https://doi.org/10.1016/j.jcat.2011.06.015 CrossRefGoogle Scholar
  72. 72.
    Huang S-F, Terakura K, Ozaki T, Ikeda T, Boero M, Oshima M, Ozaki J, Miyata S (2009) Phys Rev B 80:235410. https://doi.org/10.1103/PhysRevB.80.235410 ADSCrossRefGoogle Scholar
  73. 73.
    Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L (2011) Angew. Chemie – Int. Ed. 50:11756–11760. https://doi.org/10.1002/anie.201105204 CrossRefGoogle Scholar
  74. 74.
    Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ (2013) Angew Chemie - Int Ed 52:3110–3116. https://doi.org/10.1002/anie.201209548 CrossRefGoogle Scholar
  75. 75.
    Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek JB, Dai L (2012) Angew. Chemie - Int. Ed. 51:4209–4212. https://doi.org/10.1002/anie.201109257 CrossRefGoogle Scholar
  76. 76.
    Liang J, Jiao Y, Jaroniec M, Qiao SZ (2012) Angew. Chemie - Int. Ed 51:11496–11500. https://doi.org/10.1002/anie.201206720 CrossRefGoogle Scholar
  77. 77.
    Zheng Y, Jiao Y, Li LH, Xing T, Chen Y, Jaroniec M, Qiao SZ (2014) ACS Nano 8:5290–5296. https://doi.org/10.1021/nn501434a CrossRefGoogle Scholar
  78. 78.
    Wu X, Radovic LR (2004) J Phys Chem A 108:9180–9187. https://doi.org/10.1021/jp048212w CrossRefGoogle Scholar
  79. 79.
    Huang S, Li Y, Feng Y, An H, Long P, Qin C, Feng W (2015) J Mater Chem A 3:23095–23105. https://doi.org/10.1039/C5TA06012E CrossRefGoogle Scholar
  80. 80.
    Seah C-M, Chai S-P, Mohamed AR (2014) Carbon 70:1–21. https://doi.org/10.1016/j.carbon.2013.12.073 CrossRefGoogle Scholar
  81. 81.
    Wang H, Xie M, Thia L, Fisher A, Wang X (2014) J Phys Chem Lett 5:119–125. https://doi.org/10.1021/jz402416a CrossRefGoogle Scholar
  82. 82.
    Terrones M, Kamalakaran R, Seeger T, Rühle M, Zhu YQ, Kroto HW, Walton DRM, Kohler-Redlich P, Rühle M, Zhang JP, Cheetham AK, Walton DRM (2000) Chem Commun 59:2335–2336. https://doi.org/10.1039/b008253h CrossRefGoogle Scholar
  83. 83.
    Keskar G, Rao R, Luo J, Hudson J, Chen J, Rao AM (2005) Chem Phys Lett 412:269–273. https://doi.org/10.1016/j.cplett.2005.07.007 ADSCrossRefGoogle Scholar
  84. 84.
    Kudashov AG, Okotrub AV, Bulusheva LG, Asanov IP, Shubin YV, Yudanov NF, Yudanova LI, Danilovich VS, Abrosimov OG (2004) J Phys Chem B 108:9048–9053. https://doi.org/10.1021/jp048736w CrossRefGoogle Scholar
  85. 85.
    Khene S, Nyokong T (2012) J Porphyr Phthalocyanines 16:130–139. https://doi.org/10.1142/S1088424611004439 CrossRefGoogle Scholar
  86. 86.
    Zhi L, Gorelik T, Friedlein R, Wu J, Kolb U, Salaneck WR, Müllen K (2005) Small 1:798–801. https://doi.org/10.1002/smll.200500150 CrossRefGoogle Scholar
  87. 87.
    Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Nano Lett 9:1752–1758. https://doi.org/10.1021/nl803279t ADSCrossRefGoogle Scholar
  88. 88.
    Wu J, Liu M, Sharma PP, Yadav RM, Ma L, Yang Y, Zou X, Zhou X-D, Vajtai R, Yakobson BI, Lou J, Ajayan PM (2016) Nano Lett 16:466–470. https://doi.org/10.1021/acs.nanolett.5b04123 ADSCrossRefGoogle Scholar
  89. 89.
    Terrones M, Filho AGS, Rao AM (2007) Carbon nanotubes. Topics in applied physics, vol 111. Springer, Berlin/Heidelberg, pp 531–566. https://doi.org/10.1007/978-3-540-72865-8_17 CrossRefGoogle Scholar
  90. 90.
    Shen W, Fan W (2013) J Mater Chem A 1:999. https://doi.org/10.1039/c2ta00028h CrossRefGoogle Scholar
  91. 91.
    Bangert U, Pierce W, Kepaptsoglou DM, Ramasse Q, Zan R, Gass MH, Van den Berg JA, Boothroyd CB, Amani J, Hofsäss H (2013) Nano Lett 13:4902–4907. https://doi.org/10.1021/nl402812y ADSCrossRefGoogle Scholar
  92. 92.
    Krasheninnikov AV, Banhart F (2007) Nat Mater 6:723–733. https://doi.org/10.1038/nmat1996 ADSCrossRefGoogle Scholar
  93. 93.
    Felten A, Bittencourt C, Pireaux JJ, Van Lier G, Charlier JC (2005) J Appl Phys 98:074308. https://doi.org/10.1063/1.2071455 ADSCrossRefGoogle Scholar
  94. 94.
    Krasheninnikov A, V; Nordlund K (2010) J Appl Phys 107:071301. https://doi.org/10.1063/1.3318261 ADSCrossRefGoogle Scholar
  95. 95.
    Scardamaglia M, Susi T, Struzzi C, Snyders R, Di Santo G, Petaccia L, Bittencourt C (2017) Sci Rep 7:7960. https://doi.org/10.1038/s41598-017-08651-1 ADSCrossRefGoogle Scholar
  96. 96.
    Scardamaglia M, Amati M, Llorente B, Mudimela PR, Colomer J-F, Ghijsen J, Ewels CP, Snyders R, Gregoratti L, Bittencourt C (2014) Carbon 77:319–328. https://doi.org/10.1016/j.carbon.2014.05.035 CrossRefGoogle Scholar
  97. 97.
    Lehtinen O, Kotakoski J, Krasheninnikov AV, Tolvanen A, Nordlund K, Keinonen J (2010) Phys Rev B 81:153401. https://doi.org/10.1103/PhysRevB.81.153401 ADSCrossRefGoogle Scholar
  98. 98.
    Åhlgren EH, Kotakoski J, Krasheninnikov AV (2011) Phys Rev B 83:115424. https://doi.org/10.1103/PhysRevB.83.115424 ADSCrossRefGoogle Scholar
  99. 99.
    Struzzi C, Scardamaglia M, Reckinger N, Sezen H, Amati M, Gregoratti L, Colomer J-F, Ewels C, Snyders R, Bittencourt C (2017) Phys Chem Chem Phys 19:31418–31428. https://doi.org/10.1039/C7CP05305C CrossRefGoogle Scholar
  100. 100.
    Struzzi C, Erbahar D, Scardamaglia M, Amati M, Gregoratti L, Lagos MJ, Van Tendeloo G, Snyders R, Ewels C, Bittencourt C (2015) J Mater Chem C 3:2518–2527. https://doi.org/10.1039/C4TC02478H CrossRefGoogle Scholar
  101. 101.
    Felten A, Eckmann A, Pireaux J-J, Krupke R, Casiraghi C (2013) Nanotechnology 24:355705. https://doi.org/10.1088/0957-4484/24/35/355705 CrossRefGoogle Scholar
  102. 102.
    Orlando F, Lacovig P, Dalmiglio M, Baraldi A, Larciprete R, Lizzit S (2016) Surf Sci 643:214–221. https://doi.org/10.1016/j.susc.2015.06.017 ADSCrossRefGoogle Scholar
  103. 103.
    Lin Y, Ksari Y, Aubel D, Hajjar-Garreau S, Borvon G (2016) Carbon 100:337–344. https://doi.org/10.1016/j.carbon.2015.12.094 CrossRefGoogle Scholar
  104. 104.
    Tang Y-B, Yin L-C, Yang Y, Bo X-H, Cao Y-L, Wang H-E, Zhang W-J, Bello I, Lee S-T, Cheng H-M, Lee C-S (2012) ACS Nano 6:1970–1978. https://doi.org/10.1021/nn3005262 CrossRefGoogle Scholar
  105. 105.
    Ewels CP, Erbahar D, Wagner P, Rocquefelte X, Arenal R, Pochet P, Rayson M, Scardamaglia M, Bittencourt C, Briddon P (2014) Faraday Discuss 173:215–232. https://doi.org/10.1039/C4FD00111G ADSCrossRefGoogle Scholar
  106. 106.
    Susi T, Pichler T, Ayala P (2015) Beilstein J. Nanotechnol. 6:177–192. https://doi.org/10.3762/bjnano.6.17 CrossRefGoogle Scholar
  107. 107.
    Sharifi T, Hu G, Jia X, Wågberg T (2012) ACS Nano 6:8904–8912. https://doi.org/10.1021/nn302906r CrossRefGoogle Scholar
  108. 108.
    Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B a, Haasch R, Abiade J, Yarin AL, Salehi-Khojin A (2013) Nat Commun 4:2819. https://doi.org/10.1038/ncomms3819 ADSCrossRefGoogle Scholar
  109. 109.
    Usachov D, Fedorov A, Vilkov O, Senkovskiy B, Adamchuk VK, Yashina LV, Volykhov AA, Farjam M, Verbitskiy NI, Grüneis A, Laubschat C, Vyalikh DV (2014) Nano Lett 14:4982–4988. https://doi.org/10.1021/nl501389h ADSCrossRefGoogle Scholar
  110. 110.
    Rao CV, Cabrera CR, Ishikawa Y (2010) J Phys Chem Lett 1:2622–2627. https://doi.org/10.1021/jz100971v CrossRefGoogle Scholar
  111. 111.
    Maldonado S, Stevenson KJ (2005) J Phys Chem B 109:4707–4716. https://doi.org/10.1021/jp044442z CrossRefGoogle Scholar
  112. 112.
    Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele S, Van; Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M (2009) J Phys Chem C 113:14302–14310. https://doi.org/10.1021/jp811320d CrossRefGoogle Scholar
  113. 113.
    Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J (2011) J Mater Chem 21:8038. https://doi.org/10.1039/c1jm10845j CrossRefGoogle Scholar
  114. 114.
    Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S (2009) J Power Sources 187:93–97. https://doi.org/10.1016/j.jpowsour.2008.10.064 CrossRefGoogle Scholar
  115. 115.
    Nagaiah TC, Kundu S, Bron M, Muhler M, Schuhmann W (2010) Electrochem Commun 12:338–341. https://doi.org/10.1016/j.elecom.2009.12.021 CrossRefGoogle Scholar
  116. 116.
    Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal B Environ 79:89–99. https://doi.org/10.1016/j.apcatb.2007.09.047 CrossRefGoogle Scholar
  117. 117.
    Ripalda JM, Román E, Díaz N, Galán L, Montero I, Comelli G, Baraldi A, Lizzit S, Goldoni A, Paolucci G (1999) Phys Rev B 60:R3705–R3708. https://doi.org/10.1103/PhysRevB.60.R3705 ADSCrossRefGoogle Scholar
  118. 118.
    Hellgren N, Guo J, Luo Y, Såthe C, Agui A, Kashtanov S, Nordgren J, Ågren H, Sundgren J-E (2005) Thin Solid Films 471:19–34. https://doi.org/10.1016/j.tsf.2004.03.027 ADSCrossRefGoogle Scholar
  119. 119.
    Ikeda T, Boero M, Huang S-F, Terakura K, Oshima M, Ozaki J (2008) J Phys Chem C 112:14706–14709. https://doi.org/10.1021/jp806084d CrossRefGoogle Scholar
  120. 120.
    Ni S, Li Z, Yang J (2012) Nanoscale 4:1184–1189. https://doi.org/10.1039/c1nr11086a ADSCrossRefGoogle Scholar
  121. 121.
    Kim H, Lee K, Woo SI, Jung Y (2011) Phys Chem Chem Phys 13:17505. https://doi.org/10.1039/c1cp21665a CrossRefGoogle Scholar
  122. 122.
    Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Energy Environ Sci 5:7936. https://doi.org/10.1039/c2ee21802j CrossRefGoogle Scholar
  123. 123.
    Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Science 351:361–365. https://doi.org/10.1126/science.aad0832. ADSCrossRefGoogle Scholar
  124. 124.
    Xing T, Zheng Y, Li LH, Cowie BCC, Gunzelmann D, Qiao SZ, Huang S, Chen Y (2014) ACS Nano 8:6856–6862. https://doi.org/10.1021/nn501506p CrossRefGoogle Scholar
  125. 125.
    Kondo T, Casolo S, Suzuki T, Shikano T, Sakurai M, Harada Y, Saito M, Oshima M, Trioni MI, Tantardini GF, Nakamura J (2012) Phys Rev B 86:035436. https://doi.org/10.1103/PhysRevB.86.035436 ADSCrossRefGoogle Scholar
  126. 126.
    Feng L, Yang L, Huang Z, Luo J, Li M, Wang D, Chen Y (2013) Sci Rep 3:3306. https://doi.org/10.1038/srep03306 ADSCrossRefGoogle Scholar
  127. 127.
    Ertl G, Freund H-J (1999) Phys Today 52:32–38. https://doi.org/10.1063/1.882569 CrossRefGoogle Scholar
  128. 128.
    Zhang C, Grass ME, McDaniel AH, Decaluwe SC, El Gabaly F, Liu Z, McCarty KF, Farrow RL, Linne M a, Hussain Z, Jackson GS, Bluhm H, Eichhorn BW (2010) Nat Mater 9:944–949. https://doi.org/10.1038/nmat2851 ADSCrossRefGoogle Scholar
  129. 129.
    Salmeron M, Schlögl R (2008) Surf Sci Rep 63:169–199. https://doi.org/10.1016/j.surfrep.2008.01.001 ADSCrossRefGoogle Scholar
  130. 130.
    Amati M, Abyaneh MK, Gregoratti LJ (2013) Instrumentalist 8:T05001–T05001. https://doi.org/10.1088/1748-0221/8/05/T05001 ADSCrossRefGoogle Scholar
  131. 131.
    Toyoshima R, Kondoh H (2015) J Phys Condens Matter 27:083003. https://doi.org/10.1088/0953-8984/27/8/083003 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.MAX IV LaboratoryLund UniversityLundSweden
  2. 2.Chimie des Interactions Plasma-SurfaceUniversity of Mons (UMONS)MonsBelgium

Personalised recommendations