Progress of Sensors Based on Hollow Metal Sulfides Nanoparticles

  • Wenjiang LiEmail author
  • Carla Bittencourt
  • Rony Snyders
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Gas sensors are widely used, playing important role in different sectors of daily life ranging from safety and security, environmental monitoring, food safety & control to medical diagnosis. The development of physical, chemical and biological detection systems, triggered the search for more sensitive, reliable, simple and low-cost gas sensors. With this perspective, metal oxides as sensing materials have been widely used in gas sensors due to the high sensitivity, fast response and recovery times. However, their low selectivity, lack of stability, and the high operational temperatures have limited their use as sensing material for applications in gas sensors. Recently, as a promising alternative to metal oxide, metal sulfides have attracted attention as sensing materials because, the activation of intrinsic surface reactions might occur at lower working temperatures, what has the potential to lead to better selectivity and stability during operation. Besides the electronic properties of the gas sensing nanomaterials, their morphology plays an important role for improving their sensing properties. In this context, hollow nanostructures with unique physicochemical property, surface active sites and abundant inner spaces have the potential to improve the gas detection. Here, recent research progress in hollow metal sulfides nanostructures and applications in gas sensors are summarized. The effect of structural and compositional engineering in the sensing properties of hollow metal sulfides is discussed.


Metal sulfide Hollow nanostructures Gas sensor 


  1. 1.
    Jin C, Kim H, Choi S-W, Kim SS, Lee C (2014) Synthesis, structure, and gas-sensing properties of Pt-functionalized TiO2 nanowire sensors. J Nanosci Nanotechnol 14:5833CrossRefGoogle Scholar
  2. 2.
    Peeters D, Barreca D, Carraro G, Comini E, Gasparotto A, Maccato C, Sada C, Sberveglieri G (2014) Au/ε-Fe2O3 nanocomposites as selective NO2 gas sensors. J Phys Chem C 118:11813CrossRefGoogle Scholar
  3. 3.
    Li L, Liu M, He S, Chen W (2014) Free standing 3D mesoporous Co3O4@carbon foam nanostructures for ethanol gas sensing. Anal Chem 86:7996CrossRefGoogle Scholar
  4. 4.
    Chang SP, Wen CH, Chang SJ (2014) Two-dimensional ZnO nanowalls for gas sensor and photoelectrochemical applications. Electron Mater Lett 10:693ADSCrossRefGoogle Scholar
  5. 5.
    Kim HR, Haensch AH, Kim ID, Barsan N, Weimar U, Lee JH (2011) The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: synthesis, strategies, and phenomenological and spectroscopy studies. Adv Funct Mater 21:4456CrossRefGoogle Scholar
  6. 6.
    Yamazoe N (2005) Toward innovation of gas sensor technology. Sensors Actuators B Chem 108(2)CrossRefGoogle Scholar
  7. 7.
    Cássia-Santos MR, Sousa VC, Oliveira MM, Sensato FR, Bacelar WK, Gomes JW, Longo E, Leite ER, Varela JA (2005) Recent research developments in SnO2-based varistors. Mat Chem Phys 90:1CrossRefGoogle Scholar
  8. 8.
    Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sensors Actuators B Chem 121:18CrossRefGoogle Scholar
  9. 9.
    Bochenkov VE, Sergeev GB (2010) Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. In: Metal oxide nanostructures and their applications. American Scientific Publishers, Valencia, p 31Google Scholar
  10. 10.
    Timoumi A, Bouguila N, Chaari M, Kraini M, Matoussi A, Bouzouita H (2016) Electrical and dielectric properties of In2S3 synthesized by solid state reaction. J Alloy Compd 679:59CrossRefGoogle Scholar
  11. 11.
    Liu Y, Xu HY, Qian YT (2006) double-source approach to in2s3 single crystallites and their electrochemical properties. Cryst Growth Des 6:1304CrossRefGoogle Scholar
  12. 12.
    Wu Y, Wadia C, Ma WL, Sadtler B, Alivisatos AP (2008) Synthesis and photovoltaic application of Copper(I) sulfide nanocrystals. Nano Lett 8:2551ADSCrossRefGoogle Scholar
  13. 13.
    Li TL, Lee YL, Teng H (2011) CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. J Mater Chem 21:5089CrossRefGoogle Scholar
  14. 14.
    Bierman MJ, Jin S (2009) Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci (2):1050CrossRefGoogle Scholar
  15. 15.
    Hornyak GL, Dutta J, Tibbals HF, Rao AK (2008) Introduction to nanoscience. CRC Press, Boca RatonCrossRefGoogle Scholar
  16. 16.
    Boudiba A, Zhang C, Umek P, Bittencourt C, Snyders R, Olivier MG, Debliquy M (2013) Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies. Int J Hydrog Energy 38:2565CrossRefGoogle Scholar
  17. 17.
    Wang Y, Wang T, Da P, Wu XM, Zheng HG (2013) Silicon nanowires for biosensing, energy storage, and conversion. Adv Mater 25:5177–5195CrossRefGoogle Scholar
  18. 18.
    Desai UV, Xu C, Wu J, Gao D (2012) Solid-state dye-sensitized solar cells based on ordered ZnO nanowire arrays. Nanotechnology 23:205401ADSCrossRefGoogle Scholar
  19. 19.
    Bârsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813–R839ADSCrossRefGoogle Scholar
  20. 20.
    Liu Z, Misra M (2010) Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano 4:2196CrossRefGoogle Scholar
  21. 21.
    Lee J-H (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens Actuators B: Chem 140:319CrossRefGoogle Scholar
  22. 22.
    Wang F, Li H, Yuan Z, Sun Y, Chang F, Deng H, Xie L, Li H (2016) High sensitive gas sensor based on CuO nanoparticles synthetized by sol-gel method, vol 6. RSC Advances, Cambridge, p 79343Google Scholar
  23. 23.
    Yu XL, Wang Y, Chan HLW, Cao B (2009) Novel gas sensoring materials based on CuS hollow spheres. Microporous Mesoporous Mater 118:423CrossRefGoogle Scholar
  24. 24.
    Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795CrossRefGoogle Scholar
  25. 25.
    Zou Z, Qiu Y, Xie C, Xu J, Luo Y, Wang C, Yan H (2015) CdS/TiO2 nanocomposite film and its enhanced photoelectric responses to dry air and formaldehyde induced by visible light at room temperature. J Alloys Compd 645:17CrossRefGoogle Scholar
  26. 26.
    Xu K, Li N, Zeng D, Tian S, Zhang S, Hu D, Xie C (2015) Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature. ACS Appl Mater Interfaces 7:11359CrossRefGoogle Scholar
  27. 27.
    Shi W, Huo L, Wang H, Zhang H, Yang J, Wei P (2006) Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology 17:2918ADSCrossRefGoogle Scholar
  28. 28.
    Fu X, Liu J, Wan Y, Zhang X, Meng F, Liu J (2012) Preparation of a leaf-like CdS micro−/nanostructure and its enhanced gas-sensing properties for detecting volatile organic compounds. J Mater Chem 22:17782CrossRefGoogle Scholar
  29. 29.
    Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711ADSCrossRefGoogle Scholar
  30. 30.
    Yang YJ, Qi LM, Lu CH, Ma JM, Cheng HM (2005) Angew Chem Int Ed 44:598; (a) Wang YL, Cai L, Xia YN (2005) AdV Mater 17:473Google Scholar
  31. 31.
    Liu B, Zeng HC (2004) J Am Chem Soc 126:16744CrossRefGoogle Scholar
  32. 32.
    Ostwald W (1900) On the assumed isomerism of red and yellow mercury oxide and the surfacetension of solid bodies. Z Phys Chem 34:495Google Scholar
  33. 33.
    Pala N, Rumyantsev SL, Sinius J, Talapatra S, Shur MS, Gaska R (2004) Electron Lett 40:273CrossRefGoogle Scholar
  34. 34.
    Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo J, Domen K (1998) Chem Common:357Google Scholar
  35. 35.
    Liu B, Zeng HC (2005) Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small 1:566–571CrossRefGoogle Scholar
  36. 36.
    Shao HF, Qian XF, Zhu ZK (2005) The synthesis of ZnS hollow nanospheres with nanoporous shell. J Solid State Chem 178:3522ADSCrossRefGoogle Scholar
  37. 37.
    Smigelskas AD, Kirkendall EO (1947) Zinc diffusion in alpha brass. Trans AIME 171:130Google Scholar
  38. 38.
    Wang Q, Li J-X, Li G-D et al (2007) Formation of CuS nanotube arrays from CuCl nanorods through a gas-solid reaction route. J Cryst Growth 299:386ADSCrossRefGoogle Scholar
  39. 39.
    Cao H, Qian X, Wang C et al (2005) High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J Am Chem Soc 127:16024CrossRefGoogle Scholar
  40. 40.
    Ye L, Wu C, Guo W et al (2006) MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties. Chem Commun:4738Google Scholar
  41. 41.
    Wang Y, Cai L, Xia Y (2005) Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv Mater 17:473CrossRefGoogle Scholar
  42. 42.
    Yin Y, Rioux RM, Erdonmez CK et al (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711ADSCrossRefGoogle Scholar
  43. 43.
    Cao HL, Qian XF, Wang C, Ma XD, Yin J, Zhu ZK (2005) High symmetric 18-Facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage. J Am Chem Soc 127:16025Google Scholar
  44. 44.
    Wang YL, Cai L, Xia Y (2005) Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv Mater 17:473CrossRefGoogle Scholar
  45. 45.
    Ye L, Wu Cz, Guo W, Xie Y (2006) MoS2 hierarchical hollow cubic cages assembled by bilayers: one-step synthesis and their electrochemical hydrogen storage properties. Chem Commun:4738Google Scholar
  46. 46.
    Xu LL, Chen D, Liu H, Yang J (2018) Understanding the formation of nanocomposites consisting of silver sulfide and platinum hollow nanostructures. J Solid State Chem 265:387ADSCrossRefGoogle Scholar
  47. 47.
    Wang XF, Xie Z, Huang HT, Liu Z, Chen D, Shen GZ (2012) Gas sensors, thermistor and photodetector based on ZnS nanowires. J Mater Chem 22:6845CrossRefGoogle Scholar
  48. 48.
    Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, Vanzetti L, Malagù C, Zonta G (2016) Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors 16:296CrossRefGoogle Scholar
  49. 49.
    Carotta MC, Benetti M, Ferrari E, Giberti A, Malagù C, Nagliati M, Vendemiati B, Martinelli G (2007) Basic interpretation of thick film gas sensors for atmospheric application. Sensors Actuators B Chem 126:672–677CrossRefGoogle Scholar
  50. 50.
    Park M, Park YJ, Chen X (2016) MoS2-based tactile sensor for electronic skin applications. Adv Mater 28(13):2556CrossRefGoogle Scholar
  51. 51.
    Zhang LP, Dong R, Zhu ZhY, Wang ShR (2017) Au nanoparticles decorated ZnS hollow spheres for highly improved gas sensor performances. Sens Actuators B 245:112CrossRefGoogle Scholar
  52. 52.
    Kim JS, Yoo HW, Choi HO (2014) Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. Nano Lett 14:5941ADSCrossRefGoogle Scholar
  53. 53.
    Wang H, Sun Z, Lu Q et al (2012) One-pot synthesis of (Au Nanorod)–(Metal Sulfide) core–shell nanostructures with enhanced gas-sensing property. Small 8(8):1167–1172CrossRefGoogle Scholar
  54. 54.
    Yue Q, Shao ZZ, Chang SL, Li JB (2013) Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett 8:425ADSCrossRefGoogle Scholar
  55. 55.
    Tan YH, Yu K, Yang T, Zhang QF, Cong WT, Yin HH, Zhang ZL, Chen YW, Zhu ZQ (2014) The combinations of hollow MoS2 micro@nano-spheres: one-step synthesis, excellent photocatalytic and humidity sensing properties. J Mater Chem C 2(27):5422CrossRefGoogle Scholar
  56. 56.
    Yu XL, Wang Y, Chan HLW, Cao CB (2009) Novel gas sensoring materials based on CuS hollow spheres. Microporous Mesoporous Mater 118:423CrossRefGoogle Scholar
  57. 57.
    Guidi V, Fabbri B, Gaiardo A, Gherardi S, Giberti A, Malagù C, Zonta G, Bellutti P (2015) Metal sulfides as a new class of sensing materials. Procedia Eng 120:138CrossRefGoogle Scholar
  58. 58.
    Yu XL, Ji HM, Wang HL, Sun J, Du XW (2010) Synthesis and sensing properties of ZnO/ZnS nanocages. Nanoscale Res Lett 5:644ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Material Science and TechnologyTianjin University of TechnologyTianjinChina
  2. 2.Chimie des Interactions Plasma-SurfaceUniversity of Mons (UMONS)MonsBelgium
  3. 3.Materia Nova Research CenterMonsBelgium

Personalised recommendations