Advertisement

Gas Sensing Using Monolayer MoS2

  • Ruben Canton-Vitoria
  • Nikos Tagmatarchis
  • Yuman Sayed-Ahmad-Baraza
  • Chris Ewels
  • Dominik Winterauer
  • Tim Batten
  • Adam Brunton
  • Sebastian NuferEmail author
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

In this chapter we explore the possibilities of using MoS2 for chemical gas sensing. We first introduce monolayer MoS2 and discuss the different reconstructed phases that can be produced in terms of their atomic and electronic structure. We show how these properties can vary drastically from their bulk counterparts, and how MoS2 can be taken as a useful model for other transition metal dichalcogenides (TMDs). We next explore different routes to tune the material properties through chemical functionalisation, before summarising the current literature on gas sensing using MoS2. We discuss the possibilities for Raman spectroscopy of MoS2 as a highly selective route to gas sensing, and the future possibilities for this as-yet largely unexplored application for this important family of monolayer TMDs.

Keywords

Gas sensing MoS2 Transition metal dichalcogenides 

Notes

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642742.

References

  1. 1.
    Liu X, Cheng S, Liu H et al (2012) A survey on gas sensing technology. Sensors (Basel) 12:9635–9665Google Scholar
  2. 2.
    Jimenez-Cadena G, Riu J, Rius FX (2007) Gas sensors based on nanostructured materials. Analyst 132:1083–1099ADSGoogle Scholar
  3. 3.
    Varghese SS, Varghese SH, Swaminathan S et al (2015) Two-dimensional materials for sensing: graphene and beyond. Electronics 4:651–687Google Scholar
  4. 4.
    Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1:10078–10091Google Scholar
  5. 5.
    Dan Y, Lu Y, Kybert NJ et al (2009) Intrinsic response of graphene vapor sensors. Nano Lett 9:1472–1475ADSGoogle Scholar
  6. 6.
    Chikkadi K, Muoth M, Hierold C (2013) Hysteresis-free, suspended pristine carbon nanotube gas sensors. Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International conference on. pp 1637–1640Google Scholar
  7. 7.
    Xia J, Chen F, Li J, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4:505–509.  https://doi.org/10.1038/nnano.2009.177 ADSCrossRefGoogle Scholar
  8. 8.
    Wang X, Sun X, Hu PA et al (2013) Colorimetric sensor based on self-assembled Polydiacetylene/graphene-stacked composite film for vapor-phase volatile organic compounds. Adv Funct Mater 23:6044–6050Google Scholar
  9. 9.
    Arsat R, Breedon M, Shafiei M et al (2009) Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem Phys Lett 467:344–347ADSGoogle Scholar
  10. 10.
    Cittadini M, Bersani M, Perrozzi F et al (2014) Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor. Carbon 69:452–459Google Scholar
  11. 11.
    Liu M, Chen W (2013) Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Biosens Bioelectron 46:68–73ADSGoogle Scholar
  12. 12.
    Ganatra R, Zhang Q (2014) Few-layer MoS2: a promising layered semiconductor. ACS Nano 8:4074–4099Google Scholar
  13. 13.
    Jiang J-W (2015) Graphene versus MoS2: a short review. Front Phys 10:287–302Google Scholar
  14. 14.
    Zhang G, Liu H, Qu J, Li J (2016) Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ Sci 9:1190–1209Google Scholar
  15. 15.
    Chhowalla M, Shin HS, Eda G et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275Google Scholar
  16. 16.
    Chen Y, Tan C, Zhang H, Wang L (2015) Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 44:2681–2701Google Scholar
  17. 17.
    Heine T (2014) Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Acc Chem Res 48:65–72Google Scholar
  18. 18.
    Wang H, Yuan H, Hong SS et al (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev 44:2664–2680Google Scholar
  19. 19.
    Voiry D, Mohite A, Chhowalla M (2015) Phase engineering of transition metal dichalcogenides. Chem Soc Rev 44:2702–2712Google Scholar
  20. 20.
    Chen X, McDonald AR (2016) Functionalization of two-dimensional transition-metal Dichalcogenides. Adv Mater 28:5738–5746Google Scholar
  21. 21.
    Presolski S, Pumera M (2016) Covalent functionalization of MoS2. Mater Today 19:140–145Google Scholar
  22. 22.
    Rouxel J (1986) Reactivity and phase transitions in transition metal dichalcogenides intercalation chemistry. J Chim Phys 83:841–850ADSGoogle Scholar
  23. 23.
    Ramsdell LS (1947) Studies on silicon carbide. Am Mineral 32:64–82Google Scholar
  24. 24.
    Kolobov AV, Tominaga J (2016) Bulk TMDCs: review of structure and properties. 2-dimensional transition-metal dichalcogenides. Springer, Cham, pp 29–77Google Scholar
  25. 25.
    Zhao W, Ribeiro RM, Eda G (2014) Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc Chem Res 48:91–99Google Scholar
  26. 26.
    Jiang T, Liu H, Huang D et al (2014) Valley and band structure engineering of folded MoS2 bilayers. Nat Nanotechnol 9:825–829ADSGoogle Scholar
  27. 27.
    Zhu H, Wang Y, Xiao J et al (2015) Observation of piezoelectricity in free-standing monolayer MoS2. Nat Nanotechnol 10:151–155ADSGoogle Scholar
  28. 28.
    Wu W, Wang L, Li Y et al (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:470ADSGoogle Scholar
  29. 29.
    Py M, Haering R (1983) Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can J Phys 61:76–84ADSGoogle Scholar
  30. 30.
    Dungey KE, Curtis MD, Penner-Hahn JE (1998) Structural characterization and thermal stability of MoS2 intercalation compounds. Chem Mater 10:2152–2161Google Scholar
  31. 31.
    Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712ADSGoogle Scholar
  32. 32.
    Castellanos-Gomez A, Poot M, Steele GA et al (2012) Elastic properties of freely suspended MoS2 nanosheets. Adv Mater 24:772–775Google Scholar
  33. 33.
    Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5:9703–9709Google Scholar
  34. 34.
    Liu K, Yan Q, Chen M et al (2014) Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett 14:5097–5103ADSGoogle Scholar
  35. 35.
    Pu J, Yomogida Y, Liu K-K et al (2012) Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett 12:4013–4017ADSGoogle Scholar
  36. 36.
    Liu G-B, Xiao D, Yao Y et al (2015) Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem Soc Rev 44:2643–2663Google Scholar
  37. 37.
    Splendiani A, Sun L, Zhang Y et al (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275ADSGoogle Scholar
  38. 38.
    Kuc A, Zibouche N, Heine T (2011) Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B 83:245213ADSGoogle Scholar
  39. 39.
    Molina-Sánchez A, Sangalli D, Hummer K et al (2013) Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2. Phys Rev B 88:045412ADSGoogle Scholar
  40. 40.
    Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS2 a new direct-gap semiconductor. Phys Rev Lett 105:136805ADSGoogle Scholar
  41. 41.
    Alidoust N, Bian G, Xu S-Y, et al (2013) Observation of monolayer valence band spin-orbit effect and induced quantum well states (QWS) in MoX2. arXiv preprint arXiv:1312.7631Google Scholar
  42. 42.
    Dou X, Ding K, Jiang D et al (2016) Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure. ACS Nano 10:1619–1624Google Scholar
  43. 43.
    Klots A, Newaz A, Wang B et al (2014) Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci Rep 4:6608Google Scholar
  44. 44.
    Qiu DY, Felipe H, Louie SG (2013) Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys Rev Lett 111:216805ADSGoogle Scholar
  45. 45.
    Zhu Z, Cheng Y, Schwingenschlögl U (2011) Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys Rev B 84:153402ADSGoogle Scholar
  46. 46.
    Zibouche N, Kuc A, Musfeldt J, Heine T (2014) Transition-metal dichalcogenides for spintronic applications. Ann Phys 526:395–401Google Scholar
  47. 47.
    Li Y, Chernikov A, Zhang X et al (2014) Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys Rev B 90:205422ADSGoogle Scholar
  48. 48.
    Rigosi AF, Hill HM, Li Y et al (2015) Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett 15:5033–5038ADSGoogle Scholar
  49. 49.
    Hill HM, Rigosi AF, Roquelet C et al (2015) Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett 15:2992–2997ADSGoogle Scholar
  50. 50.
    Kozawa D, Kumar R, Carvalho A, et al. (2014) Photocarrier relaxation in two-dimensional semiconductors. arXiv preprint arXiv:1402.0286Google Scholar
  51. 51.
    Tongay S, Zhou J, Ataca C et al (2013) Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 13:2831–2836ADSGoogle Scholar
  52. 52.
    Li H, Zhang Q, Yap CCR et al (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22:1385–1390Google Scholar
  53. 53.
    Lee C, Yan H, Brus LE et al (2010) Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4:2695–2700Google Scholar
  54. 54.
    Berkelbach TC, Hybertsen MS, Reichman DR (2013) Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys Rev B 88:045318ADSGoogle Scholar
  55. 55.
    Ryou J, Kim Y-S, Santosh K, Cho K (2016) Monolayer MoS2 bandgap modulation by dielectric environments and tunable bandgap transistors. Sci Rep 6:29184ADSGoogle Scholar
  56. 56.
    Shi H, Pan H, Zhang Y-W, Yakobson BI (2013) Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys Rev B 87:155304ADSGoogle Scholar
  57. 57.
    Zhang C, Johnson A, Hsu C-L et al (2014) Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett 14:2443–2447ADSGoogle Scholar
  58. 58.
    Kaasbjerg K, Thygesen KS, Jacobsen KW (2012) Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys Rev B 85:115317ADSGoogle Scholar
  59. 59.
    Novoselov K, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453ADSGoogle Scholar
  60. 60.
    Jena D, Konar A (2007) Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys Rev Lett 98:136805ADSGoogle Scholar
  61. 61.
    Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150ADSGoogle Scholar
  62. 62.
    Ghorbani-Asl M, Borini S, Kuc A, Heine T (2013) Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys Rev B 87:235434ADSGoogle Scholar
  63. 63.
    Conley HJ, Wang B, Ziegler JI et al (2013) Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13:3626–3630ADSGoogle Scholar
  64. 64.
    Yang L, Cui X, Zhang J et al (2014) Lattice strain effects on the optical properties of MoS2 nanosheets. Sci Rep 4:5649Google Scholar
  65. 65.
    Bhimanapati GR, Lin Z, Meunier V et al (2015) Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12):11509–11539Google Scholar
  66. 66.
    Jaramillo TF, Jørgensen KP, Bonde J et al (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102ADSGoogle Scholar
  67. 67.
    Wang H, Zhang Q, Yao H et al (2014) High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials. Nano Lett 14:7138–7144ADSGoogle Scholar
  68. 68.
    Schweiger H, Raybaud P, Kresse G, Toulhoat H (2002) Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: a theoretical study. J Catal 207:76–87Google Scholar
  69. 69.
    Cao D, Shen T, Liang P et al (2015) Role of chemical potential in flake shape and edge properties of monolayer MoS2. J Phys Chem C 119:4294–4301Google Scholar
  70. 70.
    Lauritsen J, Nyberg M, Nørskov JK et al (2004) Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy. J Catal 224:94–106Google Scholar
  71. 71.
    Füchtbauer HG, Tuxen AK, Li Z et al (2014) Morphology and atomic-scale structure of MoS2 nanoclusters synthesized with different sulfiding agents. Top Catal 57:207–214Google Scholar
  72. 72.
    Lauritsen JV, Kibsgaard J, Helveg S et al (2007) Size-dependent structure of MoS2 nanocrystals. Nat Nanotechnol 2:53–58ADSGoogle Scholar
  73. 73.
    Yu S, Zheng W (2016) Fundamental insights into the electronic structure of zigzag MoS2 nanoribbons. Phys Chem Chem Phys 18:4675–4683Google Scholar
  74. 74.
    Heising J, Kanatzidis MG (1999) Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J Am Chem Soc 121:638–643Google Scholar
  75. 75.
    Heising J, Kanatzidis MG (1999) Exfoliated and restacked MoS2 and WS2: ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J Am Chem Soc 121:11720–11732Google Scholar
  76. 76.
    Wang L, Xu Z, Wang W, Bai X (2014) Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J Am Chem Soc 136:6693–6697Google Scholar
  77. 77.
    Eda G, Fujita T, Yamaguchi H et al (2012) Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6:7311–7317Google Scholar
  78. 78.
    Chou SS, Sai N, Lu P et al (2015) Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat Commun 6:8311ADSGoogle Scholar
  79. 79.
    Sandoval SJ, Yang D, Frindt R, Irwin J (1991) Raman study and lattice dynamics of single molecular layers of MoS2. Phys Rev B 44:3955ADSGoogle Scholar
  80. 80.
    Eda G, Yamaguchi H, Voiry D et al (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116ADSGoogle Scholar
  81. 81.
    Wypych F, Schöllhorn R (1992) 1T-MoS2, a new metallic modification of molybdenum disulfide. J Chem Soc Chem Commun 19:1386–1388Google Scholar
  82. 82.
    Wypych F, Weber T, Prins R (1998) Scanning tunneling microscopic investigation of 1T-MoS2. Chem Mater 10:723–727Google Scholar
  83. 83.
    Wypych F, Solenthaler C, Prins R, Weber T (1999) Electron diffraction study of intercalation compounds derived from 1T-MoS2. J Solid State Chem 144:430–436ADSGoogle Scholar
  84. 84.
    Lin Y-C, Dumcenco DO, Huang Y-S, Suenaga K (2014) Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nanotechnol 9:391–396ADSGoogle Scholar
  85. 85.
    Calandra M (2013) Chemically exfoliated single-layer MoS2: stability, lattice dynamics, and catalytic adsorption from first principles. Phys Rev B 88:245428ADSGoogle Scholar
  86. 86.
    Kan M, Wang J, Li X et al (2014) Structures and phase transition of a MoS2 monolayer. J Phys Chem C 118:1515–1522Google Scholar
  87. 87.
    Enyashin AN, Seifert G (2012) Density-functional study of LixMoS2 intercalates (0⩽ x⩽ 1). Comput Theor Chem 999:13–20Google Scholar
  88. 88.
    Yang D, Sandoval SJ, Divigalpitiya W et al (1991) Structure of single-molecular-layer MoS2. Phys Rev B 43:12053ADSGoogle Scholar
  89. 89.
    Briddon P, Jones R (2000) LDA calculations using a basis of Gaussian orbitals. Phys Status Solidi B 217:131–171ADSGoogle Scholar
  90. 90.
    Rayson M, Briddon P (2009) Highly efficient method for Kohn-sham density functional calculations of 500-10 000 atom systems. Phys Rev B 80:205104ADSGoogle Scholar
  91. 91.
    Briddon PR, Rayson MJ (2011) Accurate Kohn-Sham DFT with the speed of tight binding: current techniques and future directions in materials modelling. Phys Status Solidi B 248:1309–1318ADSGoogle Scholar
  92. 92.
    Hartwigsen C, Gøedecker S, Hutter J (1998) Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 58:3641ADSGoogle Scholar
  93. 93.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188ADSMathSciNetGoogle Scholar
  94. 94.
    Nguyen EP, Carey BJ, Daeneke T et al (2014) Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2. Chem Mater 27:53–59Google Scholar
  95. 95.
    Wang K, Wang J, Fan J et al (2013) Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7:9260–9267.  https://doi.org/10.1021/nn403886t CrossRefGoogle Scholar
  96. 96.
    O’Neill A, Khan U, Coleman JN (2012) Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem Mater 24:2414–2421Google Scholar
  97. 97.
    Varrla E, Backes C, Paton KR et al (2015) Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem Mater 27:1129–1139Google Scholar
  98. 98.
    Smith RJ, King PJ, Lotya M et al (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater Weinheim 23:3944–3948.  https://doi.org/10.1002/adma.201102584 CrossRefGoogle Scholar
  99. 99.
    Pagona G, Bittencourt C, Arenal R, Tagmatarchis N (2015) Exfoliated semiconducting pure 2H-MoS2 and 2H-WS2 assisted by chlorosulfonic acid. Chem Commun 51:12950–12953Google Scholar
  100. 100.
    Canton-Vitoria R, Sayed-Ahmad-Baraza Y, Pelaez-Fernandez M et al (2017) Functionalization of MoS2 with 1,2-dithiolanes: toward donor-acceptor nanohybrids for energy conversion. npj 2D Mater Appl 1:13Google Scholar
  101. 101.
    Lee C, Yan H, Brus LE et al (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4:2695–2700.  https://doi.org/10.1021/nn1003937 CrossRefGoogle Scholar
  102. 102.
    Laursen AB, Kegnæs S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides—efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591Google Scholar
  103. 103.
    Chakraborty B, Bera A, Muthu D et al (2012) Symmetry-dependent phonon renormalization in monolayer MoS 2 transistor. Phys Rev B 85:161403ADSGoogle Scholar
  104. 104.
    Fang H, Tosun M, Seol G et al (2013) Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett 13:1991–1995ADSGoogle Scholar
  105. 105.
    Kiriya D, Tosun M, Zhao P et al (2014) Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J Am Chem Soc 136:7853–7856Google Scholar
  106. 106.
    Mao N, Chen Y, Liu D et al (2013) Solvatochromic effect on the photoluminescence of MoS2 monolayers. Small 9:1312–1315Google Scholar
  107. 107.
    Park H-Y, Lim M-H, Jeon J et al (2015) Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation. ACS Nano 9:2368–2376Google Scholar
  108. 108.
    Shokri A, Salami N (2016) Gas sensor based on MoS2 monolayer. Sensors Actuators B Chem 236:378–385Google Scholar
  109. 109.
    Perkins FK, Friedman AL, Cobas E et al (2013) Chemical vapor sensing with monolayer MoS2. Nano Lett 13:668–673ADSGoogle Scholar
  110. 110.
    Li H, Yin Z, He Q et al (2012) Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8:63–67.  https://doi.org/10.1002/smll.201101016 CrossRefGoogle Scholar
  111. 111.
    Late DJ, Huang Y-K, Liu B et al (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879–4891.  https://doi.org/10.1021/nn400026u CrossRefGoogle Scholar
  112. 112.
    Yoon HS, Joe H-E, Kim SJ et al (2015) Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts. Sci Rep 5:10440ADSGoogle Scholar
  113. 113.
    Cho B, Yoon J, Lim SK et al (2015) Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl Mater Interfaces 7:16775–16780Google Scholar
  114. 114.
    Liu B, Chen L, Liu G et al (2014) High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 8:5304–5314Google Scholar
  115. 115.
    Lee K, Gatensby R, McEvoy N et al (2013) High-performance sensors based on molybdenum disulfide thin films. Adv Mater 25:6699–6702Google Scholar
  116. 116.
    Cho B, Hahm MG, Choi M et al (2015) Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep 5:8052Google Scholar
  117. 117.
    He Q, Zeng Z, Yin Z et al (2012) Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8:2994–2999. https://doi.org/10.1002/smll. 201201224ADSCrossRefGoogle Scholar
  118. 118.
    Liu G, Rumyantsev S, Jiang C et al (2015) Selective gas sensing with $ h $-BN capped MoS 2 heterostructure thin-film transistors. IEEE Electron Device Lett 36:1202–1204ADSGoogle Scholar
  119. 119.
    Schotland RM (1969) Some aspects of remote atmospheric sensing by laser radar. Atmos Explor Remote Probes 11:179Google Scholar
  120. 120.
    Inaba H, Kobayasi T (1972) Laser-Raman radar—laser-Raman scattering methods for remote detection and analysis of atmospheric pollution. Opt Quant Electron 4:101–123Google Scholar
  121. 121.
    Kildal H, Byer RL (1971) Comparison of laser methods for the remote detection of atmospheric pollutants. Proc IEEE 59:1644–1663Google Scholar
  122. 122.
    Byer RL (1975) Remote air pollution measurement. Opt Quant Electron 7:147–177Google Scholar
  123. 123.
    Grant W, Hake R Jr, Liston E et al (1974) Calibrated remote measurement of NO2 using the differential-absorption backscatter technique. Appl Phys Lett 24:550–552ADSGoogle Scholar
  124. 124.
    Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34:1502–1503Google Scholar
  125. 125.
    Taguchi N (1971) U.S. Patent No. 3,631,436. Washington, DC: U.S. Patent and Trademark Office. (Gas sensor)Google Scholar
  126. 126.
    Morrison SR (1981) Semiconductor gas sensors. Sensors Actuators 2:329–341Google Scholar
  127. 127.
    Jaaniso R, Tan OK (2013) Semiconductor gas sensors. Elsevier, AmsterdamGoogle Scholar
  128. 128.
    Wopenka B, Pasteris JD (1987) Raman intensities and detection limits of geochemically relevant gas mixtures for a laser Raman microprobe. Anal Chem 59:2165–2170Google Scholar
  129. 129.
    Eckbreth AC (1996) Laser diagnostics for combustion temperature and species. CRC Press, Boca RatonGoogle Scholar
  130. 130.
    Kiefer J, Seeger T, Steuer S et al (2008) Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant. Meas Sci Technol 19:085408ADSGoogle Scholar
  131. 131.
    Buric MP, Chen KP, Falk J, Woodruff SD (2009) Improved sensitivity gas detection by spontaneous Raman scattering. Appl Opt 48:4424–4429ADSGoogle Scholar
  132. 132.
    Joensen P, Frindt R, Morrison SR (1986) Single-layer MoS2. Mater Res Bull 21:457–461Google Scholar
  133. 133.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669ADSGoogle Scholar
  134. 134.
    Lu G, Ocola LE, Chen J (2009) Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20:445502Google Scholar
  135. 135.
    Robinson JT, Perkins FK, Snow ES et al (2008) Reduced graphene oxide molecular sensors. Nano Lett 8:3137–3140ADSGoogle Scholar
  136. 136.
    Kauffman DR, Star A (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed 47:6550–6570Google Scholar
  137. 137.
    Zhang T, Mubeen S, Myung NV, Deshusses MA (2008) Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19:332001Google Scholar
  138. 138.
    Schedin F, Geim A, Morozov S et al (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655ADSGoogle Scholar
  139. 139.
    Malard L, Pimenta M, Dresselhaus G, Dresselhaus M (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87ADSGoogle Scholar
  140. 140.
    Late DJ, Huang Y-K, Liu B et al (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879–4891Google Scholar
  141. 141.
    Donarelli M, Prezioso S, Perrozzi F et al (2015) Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sensors Actuators B Chem 207:602–613Google Scholar
  142. 142.
    Song I, Park C, Choi HC (2015) Synthesis and properties of molybdenum disulphide: from bulk to atomic layers. RSC Adv 5:7495–7514Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ruben Canton-Vitoria
    • 1
  • Nikos Tagmatarchis
    • 1
  • Yuman Sayed-Ahmad-Baraza
    • 2
  • Chris Ewels
    • 2
  • Dominik Winterauer
    • 2
    • 3
  • Tim Batten
    • 3
  • Adam Brunton
    • 4
  • Sebastian Nufer
    • 4
    • 5
    Email author
  1. 1.Theoretical and Physical Chemistry Institute National Hellenic Research FoundationAthensGreece
  2. 2.Institut des Materiaux Jean Rouxel (IMN), UMR6502 CNRSUniversite de NantesNantesFrance
  3. 3.Renishaw plcWotton-under-EdgeUK
  4. 4.M-Solv Ltd.OxfordUK
  5. 5.University of SussexBrightonUK

Personalised recommendations