Sensing Volatile Organic Compounds by Phthalocyanines with Metal Centers: Exploring the Mechanism with Measurements and Modelling

  • Dogan ErbaharEmail author
  • Savas Berber
  • Dilek D. Erbahar
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Ab initio density functional theory calculations can be used to study the electronic structure of phthalocyanines (Pcs) with different metal centers and functional groups as well as their interaction with selected organic analytes. Optimum adsorption site of the analytes can be interpreted in terms of the charge distribution of the frontier orbitals of Pc and that the Pc reactivity correlates well with the HOMO-LUMO gap. Calculated analyte-Pc interaction energies provide useful information about the suitability of specific Pc isomers to bind specific molecules, deciding about the suitability for sensing of organic pollutants in aqueous media.


Organic pollutants Chemical sensor Phthalocyanine Modeling Ab initio 


  1. 1.
    James D, Scott SM, Ali Z, O’Hare WT (2005) Chemical sensors for electronic nose systems. Microchim Acta 149(1):1–17. CrossRefGoogle Scholar
  2. 2.
    Zhou R, Josse F, Gopel W, Ozturk ZZ, Bekaroglu O (1996) Phthalocyanines as sensitive materials for chemical sensors. Appl Organomet Chem 10(8):557–577.<557::Aid-Aoc521>3.3.Co;2-V CrossRefGoogle Scholar
  3. 3.
    Basova TV, Tasaltin C, Gurek AG, Ebeoglu MA, Ozturk ZZ, Ahsen V (2003) Mesomorphic phthalocyanine as chemically sensitive coatings for chemical sensors. Sensor Actuators B-Chem 96(1–2):70–75. CrossRefGoogle Scholar
  4. 4.
    Mumyakmaz B, Ozmen A, Ebeoglu MA, Tasaltin C (2008) Predicting gas concentrations of ternary gas mixtures for a predefined 3D sample space. Sensor Actuators B-Chem 128(2):594–602. CrossRefGoogle Scholar
  5. 5.
    Ozmen A, Tekce F, Ebeoglu MA, Tasaltin C, Ozturk ZZ (2006) Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network. Sensor Actuators B-Chem 115(1):450–454. CrossRefGoogle Scholar
  6. 6.
    Giancane G, Guascito MR, Malitesta C, Mazzotta E, Picca RA, Valli L (2009) QCM sensors for aqueous phenols based on active layers constituted by tetrapyrrolic macrocycle Langmuir films. J Porphyrins Phthalocyanines 13(11):1129–1139. CrossRefGoogle Scholar
  7. 7.
    Harbeck M, Erbahar DD, Gurol I, Musluoglu E, Ahsen V, Ozturk ZZ (2010) Phthalocyanines as sensitive coatings for QCM sensors operating in liquids for the detection of organic compounds. Sensor Actuators B-Chem 150(1):346–354. CrossRefGoogle Scholar
  8. 8.
    Erbahar DD, Gurol I, Ahsen V, Ozturk ZZ, Musluoglu E, Harbeck M (2011) Explosives detection in sea water with phthalocyanine quartz crystal microbalance sensors. Sens Lett 9(2):745–748. CrossRefGoogle Scholar
  9. 9.
    Harbeck M, Erbahar DD, Gurol I, Musluoglu E, Ahsen V, Ozturk ZZ (2011) Phthalocyanines as sensitive coatings for QCM sensors: comparison of gas and liquid sensing properties. Sensor Actuators B-Chem 155(1):298–303. CrossRefGoogle Scholar
  10. 10.
    Day PN, Wang ZQ, Pachter R (1998) Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution. Theochem J Mol Struct 455(1):33–50. CrossRefGoogle Scholar
  11. 11.
    Ishikawa N, Maurice D, HeadGordon M (1996) An ab initio study of excited states of the phthalocyanine magnesium complex and its cation radical. Chem Phys Lett 260(1–2):178–185. ADSCrossRefGoogle Scholar
  12. 12.
    Nguyen KA, Pachter R (2001) Ground state electronic structures and spectra of zinc complexes of porphyrin, tetraazaporphyrin, tetrabenzoporphyrin, and phthalocyanine: a density functional theory study. J Chem Phys 114(24):10757–10767. ADSCrossRefGoogle Scholar
  13. 13.
    Lozzi L, Santucci S, La Rosa S, Delley B, Picozzi S (2004) Electronic structure of crystalline copper phthalocyanine. J Chem Phys 121(4):1883–1889. ADSCrossRefGoogle Scholar
  14. 14.
    Yamaguchi T (1997) Electronic states of copper phthalocyanine adsorbed on Si(001)2x1 surface. J Phys Soc Jpn 66(3):749–756. ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhong AM, Zhang YX, Bian YZ (2010) Structures and spectroscopic properties of nonperipherally and peripherally substituted metal-free phthalocyanines: a substitution effect study based on density functional theory calculations. J Mol Graph Model 29(3):470–480. CrossRefGoogle Scholar
  16. 16.
    Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002). Pii S0953-8984(02)30737-9) The SIESTA method for ab initio order-N materials simulation. J Phys-Condens Matter 14(11):2745–2779. ADSCrossRefGoogle Scholar
  17. 17.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079. ADSCrossRefGoogle Scholar
  18. 18.
    Ceperley DM, Alder BJ (1980) Ground-state of the electron-gas by a stochastic method. Phys Rev Lett 45(7):566–569. ADSCrossRefGoogle Scholar
  19. 19.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. 2. Operators for fast iterative diagonalization. Phys Rev B 43(11):8861–8869. ADSCrossRefGoogle Scholar
  20. 20.
    Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48(20):1425–1428. ADSCrossRefGoogle Scholar
  21. 21.
    Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angewandte Chemie International Edition in English 8(11):781–853. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Dogan Erbahar
    • 1
    Email author
  • Savas Berber
    • 2
  • Dilek D. Erbahar
    • 3
  1. 1.Faculty of Engineering, Department of Mechanical Engineering, Acibadem, KadikoyDogus UniversityIstanbulTurkey
  2. 2.Department of PhysicsGebze Technical UniversityGebzeTurkey
  3. 3.TUBITAK Marmara Research Center, Materials InstituteKocaeliTurkey

Personalised recommendations