Novel Supported Nanostructured Sensors for Chemical Warfare Agents (CWAs) Detection

  • Gabriela S. García-Briones
  • Miguel Olvera-Sosa
  • Gabriela PalestinoEmail author
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Recently, the use of chemical warfare agents (CWAs) during terrorist attacks has been intensified affecting mainly civilian population around the world. Since these events are impossible to predict or prevent, the only plausible solution is to design and synthesize novel materials that allow developing more effective portable on-site sensors which at the same time could be produced at low cost in industrial scale. Nanomaterials for their outstanding properties have become ideal candidates for developing emergent platforms applied to the detection of toxic agents and biological threats. The goal of this chapter is to provide an updated overview of the latest research focused on the use of nanotechnology for developing CWAs sensors.


Nerve agent simulants Nanoparticles Graphene Chemiresistor Colorimetric sensor 



The authors would like to acknowledge the financial support of CONACyT through PhD grants, No. 385013 and No. 388119.


  1. 1.
    Sidell F (1997) Medical aspects of chemical and biological warfare. Textb Mil Med 995: 129–179Google Scholar
  2. 2.
    Ganesan K, Raza SK, R. V (2010) Chemical warfare agents. J Pharm Bioallied Sci 2:166–178. CrossRefGoogle Scholar
  3. 3.
    Szinicz L (2005) History of chemical and biological warfare agents. Toxicology 214:167–181. CrossRefGoogle Scholar
  4. 4.
    Riley B (2003) The toxicology and treatment of injuries from chemicalwarfare agents. Curr Anaesth Crit Care 14:173–177. CrossRefGoogle Scholar
  5. 5.
    Bhaganagar K, Bhimireddy SR (2017) Assessment of the plume dispersion due to chemical attack on April 4, 2017, in Syria. Nat Hazards 88:1893–1901. CrossRefGoogle Scholar
  6. 6.
    López-Muñoz F, Alamo C, Guerra JA, García-García P (2008) The development of neurotoxic agents as chemical weapons during the national socialist period in Germany. Rev Neurol 47:99–106Google Scholar
  7. 7.
    Black R (2016) Development, historical use and properties of chemical warfare agents. In: Chemical warfare toxicology, vol 1: fundamental aspects, pp 1–28Google Scholar
  8. 8.
    Colovic MB, Krstic DZ, Lazarevic-Pasti TD et al (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–335. CrossRefGoogle Scholar
  9. 9.
    Chauhan S, Chauhan S, D’Cruz R et al (2008) Chemical warfare agents. Environ Toxicol Pharmacol 26:113–122. CrossRefGoogle Scholar
  10. 10.
    Singh VV, Wang J (2015) Nano/micromotors for security/defense applications. A review. Nanoscale 7:19377–19389. ADSCrossRefGoogle Scholar
  11. 11.
    Lévêque C, Ferracci G, Maulet Y et al (2014) Direct biosensor detection of botulinum neurotoxin endopeptidase activity in sera from patients with type A botulism. Biosens Bioelectron 57:207–212. CrossRefGoogle Scholar
  12. 12.
    Heymann WR (2004) Threats of biological and chemical warfare on civilian populations. Dialog Dermatol:452–453CrossRefGoogle Scholar
  13. 13.
    Jang YJ, Kim K, Tsay OG et al (2015) Update 1 of: destruction and detection of chemical warfare agents. Chem Rev 115:PR1–PR76. CrossRefGoogle Scholar
  14. 14.
    Yang YC (1999) Chemical detoxification of nerve agent VX. Acc Chem Res 32:109–115. CrossRefGoogle Scholar
  15. 15.
    Bartelt-Hunt SL, Knappe DRU, Barlaz MA (2008) A review of chemical warfare agent simulants for the study of environmental behavior. Crit Rev Environ Sci Technol 38:112–136. CrossRefGoogle Scholar
  16. 16.
    Halliwell J, Savage AC, Buckley N, Gwenin C (2014) Electrochemical impedance spectroscopy biosensor for detection of active botulinum neurotoxin. Sens Bio Sens Res 2:12–15. CrossRefGoogle Scholar
  17. 17.
    Fennell J, Hamaguchi H, Yoon B, Swager T (2017) Chemiresistor devices for chemical warfare agent detection based on polymer wrapped single-walled carbon nanotubes. Sensors 17:982. CrossRefGoogle Scholar
  18. 18.
    Blum AP, Kammeyer JK, Rush AM et al (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137:2140–2154. CrossRefGoogle Scholar
  19. 19.
    Sharma TK, Ramanathan R, Rakwal R et al (2015) Moving forward in plant food safety and security through NanoBioSensors: adopt or adapt biomedical technologies. Proteomics 15:1680–1692. CrossRefGoogle Scholar
  20. 20.
    Li J (2009) Carbon-based sensors. In: Carbon materials for catalisis. Wiley, Hobolen, pp 507–533Google Scholar
  21. 21.
    Basu S, Bhattacharyya P (2012) Recent developments on graphene and graphene oxide based solid state gas sensors. Sens Actuators B Chem 173:1–21. CrossRefGoogle Scholar
  22. 22.
    Salavagione HJ, Díez-Pascual AM, Lázaro E et al (2014) Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer. J Mater Chem A 2:14289–14328. CrossRefGoogle Scholar
  23. 23.
    Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25. CrossRefGoogle Scholar
  24. 24.
    Facure MH, Mercante LA, Mattoso LH, Correa DS (2017) Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta 167:59–66. CrossRefGoogle Scholar
  25. 25.
    Li L, Shi Y, Pan L et al (2015) Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. J Mater Chem B 3:2920–2930. CrossRefGoogle Scholar
  26. 26.
    Yoon H, Jang J (2009) Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv Funct Mater 19:1567–1576. CrossRefGoogle Scholar
  27. 27.
    Baker CO, Huang X, Nelson W, Kaner RB (2017) Polyaniline nanofibers: broadening applications for conducting polymers. Chem Soc Rev 46:1510–1525. CrossRefGoogle Scholar
  28. 28.
    Li M, Li H, Zhong W et al (2014) Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl Mater Interfaces 6:1313–1319. CrossRefGoogle Scholar
  29. 29.
    Sheng G, Xu G, Xu S et al (2015) Cost-effective preparation and sensing application of conducting polymer PEDOT/ionic liquid nanocomposite with excellent electrochemical properties. RSC Adv 5:20741–20746. CrossRefGoogle Scholar
  30. 30.
    Zhao Y, Liu B, Pan L, Yu G (2013) 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ Sci 6:2856. CrossRefGoogle Scholar
  31. 31.
    Rivero RE, Molina MA, Rivarola CR, Barbero CA (2014) Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite. Sensors Actuators B Chem 190:270–278. CrossRefGoogle Scholar
  32. 32.
    Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307. CrossRefGoogle Scholar
  33. 33.
    Fennell JF, Liu SF, Azzarelli JM et al (2016) Nanowire chemical/biological sensors: status and a roadmap for the future. Angew Chemie - Int Ed 55:1266–1281. CrossRefGoogle Scholar
  34. 34.
    Ishihara S, O’Kelly CJ, Tanaka T et al (2017) Metallic vs. semiconducting SWCNT chemiresistors: a case for separated SWCNTs wrapped by metallo-supramolecular polymer. ACS Appl Mater Interfaces:7b12992. CrossRefGoogle Scholar
  35. 35.
    Yoo R, Kim J, Song MJ et al (2015) Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas. Sens Actuators B Chem 209:444–448. CrossRefGoogle Scholar
  36. 36.
    Wang F, Gu H, Swager TM (2008) Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents, vol 130, pp 8–10. CrossRefGoogle Scholar
  37. 37.
    Yoon W, Lee SH, Kwon OS et al (2009) Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses. Angew Chemie Int Ed 48:2755–2758. CrossRefGoogle Scholar
  38. 38.
    Kwon OS, Park CS, Park SJ et al (2016) Carboxylic acid-functionalized conducting-polymer nanotubes as highly sensitive nerve-agent chemiresistors. Sci Rep 6:33724. ADSCrossRefGoogle Scholar
  39. 39.
    Shar M, Khan J, Wang Y-W et al (2017) Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic sensitive fluorescence on-off probes for the fast detection. J Hazard Mater 342:10–19. CrossRefGoogle Scholar
  40. 40.
    Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192. CrossRefGoogle Scholar
  41. 41.
    Whitaker CM, Derouin EE, O’connor MB et al (2017) Smart hydrogel sensor for detection of organophosphorus chemical warfare nerve agents. J Macromol Sci Part A Pure Appl Chem 54:40–46. CrossRefGoogle Scholar
  42. 42.
    Raghavender Goud D, Purohit AK, Tak V et al (2014) A highly selective and sensitive “turn-on” fluorescence chemodosimeter for the detection of mustard gas. Chem Commun 50:12363–12366. CrossRefGoogle Scholar
  43. 43.
    Varju BR, Ovens JS, Leznoff DB (2017) Mixed Cu(I)/Au(I) coordination polymers as reversible turn-on vapoluminescent sensors for volatile thioethers. Chem Commun 53:6500–6503. CrossRefGoogle Scholar
  44. 44.
    Son HY, Ryu JH, Lee H, Nam YS (2013) Bioinspired templating synthesis of metal-polymer hybrid nanostructures within 3D electrospun nanofibers. ACS Appl Mater Interfaces 5:6381–6390. CrossRefGoogle Scholar
  45. 45.
    Jo S, Kim J, Noh J et al (2014) Conjugated polymer dots-on-electrospun fibers as a fluorescent nanofibrous sensor for nerve gas stimulant. ACS Appl Mater Interfaces 6:22884–22893. CrossRefGoogle Scholar
  46. 46.
    Climent E, Biyikal M, Gawlitza K et al (2017) Determination of the chemical warfare agents Sarin, Soman and Tabun in natural waters employing fluorescent hybrid silica materials. Sens Actuators B Chem 246:1056–1065. CrossRefGoogle Scholar
  47. 47.
    Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932CrossRefGoogle Scholar
  48. 48.
    Piriya VSA, Joseph P, Daniel SCGK et al (2017) Colorimetric sensors for rapid detection of various analytes. Mater Sci Eng C 78:1231–1245. CrossRefGoogle Scholar
  49. 49.
    Betty CA, Lal R, Yakhmi JV, Kulshreshtha SK (2007) Time response and stability of porous silicon capacitive immunosensors. Biosens Bioelectron 22:1027–1033. CrossRefGoogle Scholar
  50. 50.
    Boopathi M, Singh B, Vijayaraghavan R (2008) A review on NBC body protective clothing. Open Text J 1:1–8. CrossRefGoogle Scholar
  51. 51.
    Belger C, Weis J, Ahmed E, Swager T (2015) Colorimetric stimuli-responsive hydrogel polymers for the detection of nerve agent surrogates. Macromolecules 48:7990–7994. ADSCrossRefGoogle Scholar
  52. 52.
    Giannakoudakis DA, Hu Y, Florent M, Bandosz TJ (2017) Smart textiles of MOF/g-C3N4 nanospheres for the rapid detection/detoxification of chemical warfare agents. Nanoscale Horiz 2:356–364. ADSCrossRefGoogle Scholar
  53. 53.
    Furue R, Koveke EP, Sugimoto S et al (2017) Arsine gas sensor based on gold-modified reduced graphene oxide. Sensors Actuators B Chem 240:657–663. CrossRefGoogle Scholar
  54. 54.
    De Stefano L, Rotiroti L, Rendina I et al (2006) Porous silicon-based optical microsensor for the detection of L-glutamine. Biosens Bioelectron 21:1664–1667. CrossRefGoogle Scholar
  55. 55.
    Lin VS (1997) A porous silicon-based optical interferometric biosensor. Science (80-) 278:840–843. ADSCrossRefGoogle Scholar
  56. 56.
    Yan C, Qi F, Li S et al (2016) Functionalized photonic crystal for the sensing of Sarin agents. Talanta 159:412–417. CrossRefGoogle Scholar
  57. 57.
    Ramu VG, Bardaji E, Heras M (2014) DEPBT as coupling reagent to avoid racemization in a solution-phase synthesis of a kyotorphin derivative. Synthesis 46:1481–1486. CrossRefGoogle Scholar
  58. 58.
    Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Switzerland) 15:10481–10510. CrossRefGoogle Scholar
  59. 59.
    Tomar A, Gupta G (2016) Surface plasmon resonance sensing of biological warfare agent botulinum neurotoxin A. J Bioterror Biodef 7.
  60. 60.
    Marszalek Z, Sroka R, Zeglen T (2017) Multi-frequency conditioning system of the inductive loop sensor – simulation investigations. Methods Model Autom Robot:889–893Google Scholar
  61. 61.
    Afkhami A, Hashemi P, Bagheri H et al (2017) Impedimetric immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosens Bioelectron 93:124–131. CrossRefGoogle Scholar
  62. 62.
    Hwang HM, Hwang E, Kim D, Lee H (2016) Mesoporous non-stacked graphene-receptor sensor for detecting nerve agents. Nat Publ Gr 6:1–8. CrossRefGoogle Scholar
  63. 63.
    Zhu Y, Cheng Z, Xiang Q et al (2016) Synthesis of functionalized mesoporous TiO2-SiO2 with organic fluoroalcohol as high performance DMMP gas sensor. Sens Actuators B Chem 248:785–792. CrossRefGoogle Scholar
  64. 64.
    Ali MA, Tsai TH, Braun PV (2018) Amplified detection of chemical warfare agents using two-dimensional chemical potential gradients. ACS Omega 3:14665–14670. CrossRefGoogle Scholar
  65. 65.
    Karthik R, Kumar JV, Chen SM, Kokulnathan T, Yang HY, Muthuraj V (2018) Design of Novel Ytterbium Molybdate Nanoflakes Anchored Carbon Nanofibers: challenging sustainable catalyst for the detection and degradation of assassination weapon (Paraoxon-ethyl). ACS Sustain Chem Eng 6:8615–8630. CrossRefGoogle Scholar
  66. 66.
    Dennison GH, Curty C, Metherell AJ, Micich E, Zaugg A, Ward MD (2019) Qualitative colorimetric analysis of a Ir (iii)/Eu (iii) dyad in the presence of chemical warfare agents and simulants on a paper matrix. RSC Adv 9:7615–7619. CrossRefGoogle Scholar
  67. 67.
    Qi F, Yan C, Meng Z, Li S, Xu J, Hu X, Xue M (2019) Acetylcholinesterase-functionalized two-dimensional photonic crystal for the sensing of G-series nerve agents. Anal Bioanal Chem:1–9. CrossRefGoogle Scholar
  68. 68.
    Barreca D, Gasparotto A, Gri F, Comini E, Maccato C (2018) Plasma-assisted growth of β-MnO2 Nanosystems as gas sensors for safety and food industry applications. Adv Mater Interfaces 5:1800792. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Gabriela S. García-Briones
    • 1
  • Miguel Olvera-Sosa
    • 1
  • Gabriela Palestino
    • 1
    Email author
  1. 1.Universidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations