Before Natural Acceleration

  • Jochen Büttner
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 335)


By way of introduction, the chapter considers aspects of Galileo’s considerations regarding motion and mechanics prior to his conceptual shift toward the assumption that motion of fall is naturally accelerated. The aspects discussed have been selected for the relevance they assumed when, from 1602 onward, Galileo started to engage in the investigations which eventually led to the establishment of his new science of motion. In particular, his understanding of the free fall of heavy bodies and of acceleration is being presented as it is reflected in a compilation of early manuscripts, which have come to be referred to as De Motu Antiquiora. One of these manuscripts, commonly designated as On Motion, contains a chapter in which Galileo investigated the dynamics of motion along inclined planes and, in particular, provided a proof for the law of the inclined plane relating the inclination of the plane to the force along this plane experienced by a body placed upon it. Galileo’s arguments in this chapter are discussed in some detail.


  1. Archimedes, & Heath, T.L. (2002). The works of Archimedes. Mineola: Dover Publications.Google Scholar
  2. Aristotle, & Hett, W.S. (1980). Aristotle: In twenty-three volumes. Volume 14: Minor works (Reprinted edn. Loeb classical library, Vol. 307). Cambridge: Harvard University Press.Google Scholar
  3. Boccaletti, D. (2016). Galileo and the equations of motion. Heidelberg/New York: Springer International Publishing.CrossRefGoogle Scholar
  4. Bodnar, I. (2016). Aristotle’s natural philosophy. In E.N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 ed.). Metaphysics Research Lab, Stanford University, Stanford.Google Scholar
  5. Burton, C. (1890). An introduction to dynamics including kinematics, kinetics and statics. London: Longmans, Green & Co.Google Scholar
  6. Camerota, M. (1992). Gli Scritti De Motu Antiquiora di Galileo Galilei: Il Ms. Gal. 71. Un’analisi storico-critica. Cagliari: Cooperativa Universitaria.Google Scholar
  7. Camerota, M., & Helbing, M. (2000). Galileo and Pisan Aristotelianism: Galileo’s De Motu Antiquiora and the Quaestiones De Motu Elementorum of the Pisan Professors. Early Science and Medicine, 5(4), 319–365.CrossRefGoogle Scholar
  8. Clagett, M. (1941). Giovanni Marliani and late medieval physics. New York/London: Columbia University Press/P.S. King & Son.CrossRefGoogle Scholar
  9. Clagett, M. (1979). The science of mechanics in the middle ages (Publications in Medieval Science, Vol. 4). Madison: University of Wisconsin Press.Google Scholar
  10. Clavelin, M. (1983). Conceptual and technical aspects of the Galilean geometrization of the motion of heavy bodies (pp. 23–50). Dordrecht: Springer Netherlands.Google Scholar
  11. Damerow, P. (2006). Mentale Modelle als kognitive Instrumente der Transformation von technischem Wissen. In J. Renn, P. Damerow, M.D. Hyman, & M. Valleriani (Eds.), Weight, motion and force: Conceptual structural changes in ancient knowledge as a result of its transmission (Preprint 320). Berlin: Max Planck Institute for the History of Science.Google Scholar
  12. Damerow, P., & Renn, J. (2012). The equilibrium controversy: Guidobaldo del Monte’s critical notes on the mechanics of Jordanus and Benedetti and their historical and conceptual backgrounds, Vol. 2, Ed. Open Access). Berlin: Max Planck research library for the history and development of knowledge sources.Google Scholar
  13. Damerow, P., Renn, J., & Rieger, S. (2001). Hunting the white elephant: When and how did Galileo discover the law of fall? In J. Renn (Ed.), Galileo in context (pp. 29–150). Cambridge: Cambridge University Press.Google Scholar
  14. Damerow, P., Freudenthal, G., McLaughlin, P., & Renn, J. (2004). Exploring the limits of preclassical mechanics. New York: Springer.CrossRefGoogle Scholar
  15. Del Monte, G. (1581). Le Mechaniche. Venice: Francesco di Franceschi Sanese.Google Scholar
  16. Del Monte, G. (1969). Mechanicorum liber. In S. Drake & I.E.T. Drabkin (Eds.), Mechanics in sixteenth century Italy. Selections from Tartaglia, Benedetti, Guido Ubaldi and Galileo. Madison: University of Wisconsin Press.Google Scholar
  17. Del Monte, G., Renn, J., & Damerow, P. (2010). Guidobaldo del Monte’s mechanicorum liber. (Max Planck research library for the history and development of knowledge sources, Vol. 1, Ed. Open Access). Berlin.Google Scholar
  18. Dijksterhuis, E.J. (1943). Simon Stevin. M. Nijhoff, ’s-Gravenhage.Google Scholar
  19. Drake, S., & Drabkin, I.E. (1969). Mechanics in sixteenth-century Italy. Madison: The University of Wisconsin Press.Google Scholar
  20. Drake, S., & Swerdlow, N.M., Levere, T.H. (1999). Essays on Galileo and the history and philosophy of science. Toronto/Buffalo: University of Toronto Press.Google Scholar
  21. Festa, E., & Roux, S. (2008). The enigma of the inclined plane from Heron to Galileo. In R. Laird & S. Roux (Eds.), Mechanics and natural philosophy before the scientific revolution. Dordrecht: Springer.Google Scholar
  22. Fredette, R. (1969). Les De Motu “plus anciens” de Galileo Galilei: Prolégomènes. Dissertation, University of Montreal.Google Scholar
  23. Fredette, R. (1972). Galileo’s De motu antiquiora. Physis, 14, 321–348.Google Scholar
  24. Fredette, R. (2001). Galileo’s De motu antiquiora: Notes for a reappraisal. In Montesinos, J., & Solís, C. (Eds.), Largo campo di filosofare: Eurosymposium Galileo 2001 (pp. 269–280). La Orotava: Fundación Canaria Orotava de Historia de la Ciencia.Google Scholar
  25. Galilei, G. (1960). On motion and on mechanics: Comprising De Motu (ca. 1590). Translated with introduction and notes by I. E. Drabkin and Le Meccaniche (ca. 1600). Translated with introduction and notes by Stillman Drake. Madison: The University of Madison.Google Scholar
  26. Galilei, G. (2002). Le mecaniche. Edizione critica e gaggio introduttivo. Florence: Immagini della ragione, Olschki.Google Scholar
  27. Galilei, G., & Wallace, W.A. (1992). Galileo’s logical treatises: A translation, with notes and commentary, of his appropriated Latin questions on Aristotle’s Posterior analytics (Boston Studies in the Philosophy of Science, Vol. 138). Dordrecht: Kluwer.Google Scholar
  28. Galilei, G., Crew, H., & Salvio, A.D. (1954). Dialogues concerning two new sciences. New York: Dover Publications.Google Scholar
  29. Galluzzi, P. (1979). Momento. Rome: Ateneo e Bizzarri.Google Scholar
  30. Gatto, R., Stigliola, C., & Imperiali, D. (1996). La meccanica a Napoli ai tempi di Galileo. Napoli: Testi e documenti per la storia della scienza nel mezzogiorno, La Città del Sole.Google Scholar
  31. Gentner, D. (1998). Analogy. In W. Bechtel & G. Graham (Eds.), A companion to cognitive science (pp. 107–113). Oxford: Blackwell.Google Scholar
  32. Gentner, D., Holyoak, K., & Kokinov, B. (Eds.) (2001). The analogical mind: Perspectives from cognitive science. Cambridge: MIT Press.Google Scholar
  33. Gillispie, C.C. (Ed.) (1981). Dictionary of scientific biography. New York: Charles Scribner’s Sons.Google Scholar
  34. Giusti, E. (1986). Ricerche galileiane: Il trattato de motu aequabili come modello della teoria delle proporzioni. Bollettino di Storia delle Scienze Matematiche, 6(2), 89–108.Google Scholar
  35. Giusti, E. (1992). La teoria galileiana delle proporzioni. In La matematizzazione dell’universo, Lino Conti (pp. 207–222).Google Scholar
  36. Giusti, E. (1993). Euclides reformatus: La teoria delle proporzioni nella scuola galileiana. Turin: Bollati Boringhieri.Google Scholar
  37. Giusti, E. (1998). Elements for the relative chronology of Galilei’s De motu Antiquiora. Nuncius Ann Storia Sci, 2, 427–460.CrossRefGoogle Scholar
  38. Grant, E. (1965). Bradwardine and Galileo: Equality of velocities in the void. Archive for History of Exact Sciences, 2(4), 344–364.CrossRefGoogle Scholar
  39. Grant, E. (1966). Aristotle, Philoponus, Avempace, and Galileo’s Pisan dynamics. Centaurus, 11(2), 79–93.CrossRefGoogle Scholar
  40. Grant, E. (1974). A source book in medieval science (Source books in the history of the sciences). Cambridge: Harvard University Press.Google Scholar
  41. Grant, E. (2010). The nature of natural philosophy in the late middle ages (Studies in philosophy and the history of philosophy, Vol. 52). Washington, D.C.: Catholic University of America Press.Google Scholar
  42. Gregory, A. (2001). Aristotle, dynamics and proportionality. Early Science and Medicine, 6(1), 1–21.CrossRefGoogle Scholar
  43. Guerrini, L. (2014). Pereira and Galileo: acceleration in free fall and impetus theory. Bruniana e campanelliana: Ricerche filosofiche e materiali storico-testuali, XX(2), 513–530.Google Scholar
  44. Halbwachs, F., & Torunczyk, A. (1985). On Galileo’s writings on mechanics: An attempt at a semantic analysis of Viviani’s scholium. Synthese, 62(3), 459–484.CrossRefGoogle Scholar
  45. Henry, J. (2011). Galileo and the scientific revolution: The importance of his kinematics. Galilaeana, 8, 3–36.Google Scholar
  46. Heron (1976). Herons von Alexandria Mechanik und Katoptrik. Stuttgart: B. G. Teubner.Google Scholar
  47. Hooper, W.E. (1992). Galileo and the problems of motion. Dissertation, Indiana University.Google Scholar
  48. Jung, E. (2011). Intension and remission of forms. In H. Lagerlund (Ed.), Encyclopedia of medieval philosophy (pp. 551–555). Dordrecht: Springer Netherlands.Google Scholar
  49. Laird, W.R. (2001). Renaissance mechanics and the new science of motion. In J. Montesinos & C. Solís (Eds.), Largo campo di filosofare: Eurosymposium Galileo 2001 (pp. 255–267). La Orotava: Fundación Canaria Orotava de Historia de la Ciencia.Google Scholar
  50. Lewis, C. (1980). The Merton tradition and kinematics in late sixteenth and early seventeenth century Italy (Vol. 15. Saggi e testi/Università di Padova, Centro per la storia della tradizione aristotelica nel Veneto). Padua: Editrice Antenore.Google Scholar
  51. Machamer, P.K. (1978). Aristotle on natural place and natural motion. ISIS, 69(3), 377–387.CrossRefGoogle Scholar
  52. Maier, A. (1949). Studien zur Naturphilosophie der Spätscholastik Bd. 01: Die Vorläufer Galileis im 14. Jahrhundert (Storia e letteratura, Vol. 22). Roma: Edizioni di Storia e Letteratura.Google Scholar
  53. Mersenne, M., & Galilei, G. (1635). Qvestions physico-mathematiqves: Et Les mechaniqves du sieur Galilee: Avec Les Prelvdes de l’ harmonie vniuerselle vtiles aux philosophes, aux medecins, aux astrologues, aux ingenieurs, & aux musiciens Les questions theologiques, physiques, morales, et mathematiques. Paris: H. Gvenon.Google Scholar
  54. Miller, D.M. (2014). Representing space in the scientific revolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  55. Oresme, N., & Clagett, M. (1968). [Tractatus de configurationibus qualitatum et motuum.] Nicole Oresme and the medieval geometry of qualities and motions. A treatise on the uniformity and difformity of intensities known as Tractatus de configurationibus qualitatum et motuum. Edited with an introduction, English translation, and commentary by Marshall Clagett. Madison, WI: University of Wisconsin Press.Google Scholar
  56. Palmieri, P. (2003). Mental models in Galileo’s early mathematization of nature. Studies in History and Philosophy of Science, 34, 229–264.CrossRefGoogle Scholar
  57. Palmieri, P. (2005a). The cognitive development of Galileo’s theory of buoyancy. Archive for History of Exact Sciences, LIX, 189–222.CrossRefGoogle Scholar
  58. Palmieri, P. (2005b). Galileo’s construction of idealized fall in the void. History of Science, 43, 343–390.CrossRefGoogle Scholar
  59. Palmieri, P. (2017). On Scientia and Regressus. In H. Lagerlund & B. Hill (Eds.), Routledge companion to sixteenth century philosophy. New York/Routledge: Taylor & Francis.Google Scholar
  60. Pasnau, R., & Trifogli, C. (2014). Change, time, and place. In The Cambridge history of medieval philosophy (pp. 267–278). Cambridge: Cambridge University Press.Google Scholar
  61. Renn, J., Damerow, P., & McLaughlin, P. (2003). Aristotle, Archimedes, Euclid, and the origin of mechanics: The perspective of historical epistemology. In J.L. Montesinos (Ed.), Symposium Arquímedes Fundación Canaria Orotava de Historia de la Ciencia (Preprint 239). Berlin: Max Planck Institute for the History of Science.Google Scholar
  62. Salvia, S. (2017). From Archimedean hydrostatics to post-Aristotelian mechanics: Galileo’s early manuscripts De motu antiquiora (ca. 1590). Physics in Perspective, 19(2), 105–150.CrossRefGoogle Scholar
  63. Schemmel, M. (2014). Medieval representations of change and their early modern application. Foundations of Science, 19(1), 11–34.CrossRefGoogle Scholar
  64. Schiefsky, M.J. (2008). Theory and practice in Heron’s mechanics. In Mechanics and natural philosophy before the scientific revolution (pp. 15–49). Dordrecht: Springer.CrossRefGoogle Scholar
  65. Settle, T.B. (1966). Galilean science: Essays in the mechanics and dynamics of the Discorsi. PhD thesis.Google Scholar
  66. Settle, T.B. (1983). Galileo and early experimentation. In Springs of scientific creativity: Essays on founders of modern science (NED – new edition edn., pp. 3–20). University of Minnesota Press.Google Scholar
  67. Souffrin, P. (1990). Galilée et la tradition cinématique pré-classique. La proportionnalité momentum-velocitas revisitée. Cahier du Séminaire d’Epistémologie et d’Histoire des Sciences, 22, 89–104.Google Scholar
  68. Souffrin, P. (1992). Sur l’histoire du concept de vitesse d’aristote à galilée. Revue d’histoire des sciences, 45(2/3), 231–267.Google Scholar
  69. Souffrin, P. (2001). Motion on inclined planes and in liquids in Galileo’s earlier De Motu. In P.D. Napolitani & P. Souffrin (Eds.), Medieval and classical traditions (Vol. 50). Turnhout: Brepols.Google Scholar
  70. Stevin, S. (1586). De Beghinselen der Weegconst. Leiden: Druckerye van Christoffel Plantijn. By Francoys van Raphelinghen.Google Scholar
  71. Sylla, E. (1971). Medieval quantifications of qualities: The “Merton school”. Archive for History of Exact Sciences, 8(1/2), 9–39.CrossRefGoogle Scholar
  72. Sylla, E. (1973). Medieval concepts of the latitude of forms. The Oxford calculators. Archives d’Histoire Doctrinale et Littéraire du Moyen Âge, 40: 223–283.Google Scholar
  73. Tartaglia, N. (Ed.) (1565). Jordani opusculum de ponderositate. Venice: Apud C. Troianum.Google Scholar
  74. Valleriani, M. (2010). Galileo engineer (Boston Studies in the Philosophy of Science, Vol. 269). Dordrecht/London/New York: Springer.Google Scholar
  75. Vergara Caffarelli, R. (2009). Galileo Galilei and motion: A reconstruction of 50 years of experiments and discoveries. Berlin/New York/Bologna: Springer/Società italiana di Fisica.CrossRefGoogle Scholar
  76. Wallace, W.A. (1981). Prelude to Galileo: Essays on medieval and sixteenth-century sources of Galileo’s thought. Dordrecht: Reidel.CrossRefGoogle Scholar
  77. Wallace, W.A. (1984). Galileo and his sources: The heritage of the Collegio Romano in Galileo’s science. Princeton: Princeton University Press.CrossRefGoogle Scholar
  78. Wallace, W. (1990). Duhem and Koyré on Domingo de Soto. Synthese, 83(2), 239–260.CrossRefGoogle Scholar
  79. Wisan, W.L. (1974). The new science of motion: A study of Galileo’s De motu locali. Archive for History of Exact Sciences, 13, 103–306.CrossRefGoogle Scholar
  80. Wisan, W.L. (1978). Galileo’s scientific method: a reexamination. In R.E. Butts (Ed.), New perspectives on Galileo: Papers deriving from and related to a workshop on Galileo held at Virginia Polytechnic Institute and State University, 1975 (The University of Western Ontario series in philosophy of science). Dordrecht: Reidel.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jochen Büttner
    • 1
  1. 1.Max Planck Institute for the History of ScienceBerlinGermany

Personalised recommendations