Photocatalytic Properties of TiO2 Thin Films Doped With Noble Metals (Ag, Au, Pd and Pt) for Water Decontamination

  • C. Moslah
  • G. A. MousdisEmail author
  • M. Kandyla
  • G. Petropoulou
  • M. Ksibi
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Access to clean water is a major problem for many people. The use of contaminated drinking-water causes hundreds of thousands deaths every year. Even in the developed countries chemical residuals from the industry or human activities or even from the disinfection process can cause several health problems. There are many methods to purify contaminated water. Recently, semiconductor photocatalytic process has shown a great potential as a sustainable treatment technology. It is low-cost, environmentally friendly and in accordance with the “zero” waste scheme. The ability of the photocatalytic process to oxidize and remove persistent organic compounds and microorganisms in water has been widely demonstrated. Although a lot of work has been done and some commercial devices have been prepared, there are still many scientific challenges.


Photocatalysis Water purification TiO2 Photocatalytic reactors Mineralization 



The research was financially supported by the Tunisian Ministry of Higher Education and Scientific Research and the National Hellenic Research Foundation (NHRF), through a Bilateral Scientific Cooperation. The authors would like to thank N.S. Tagiara for Raman analysis and Dr. K. Giannakopoulos for EDX measurements.


  1. 1.
    Wintgens T, Salehi F, Hochstrat R, Melin T (2008) Emerging contaminants and treatment options in water recycling for indirect potable use. Water Sci Technol 57:99Google Scholar
  2. 2.
    World Health Organization (2007) Combating waterborne disease at the household level. WHO Document Production Services, Geneva. ISBN:978-92-4-159522-3Google Scholar
  3. 3.
    Suárez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7:125Google Scholar
  4. 4.
    World health organization (2005) Methyl tertiary-butyl ether (MTBE) in drinking-water. Background document for development of WHO Guidelines for drinking-water quality. World Health Organization, Geneva. (WHO/SDE/WSH/05.08/122)Google Scholar
  5. 5.
    Viessman W Jr, Hammer MJ, Perez ME, Chadik PA (2009) Water supply and pollution control, 8th edn. Prentice Hall, Upper Saddle River. ISBN:10:0132337177Google Scholar
  6. 6.
    Becher G (1999) Drinking water chlorination and health. Acta Hydrochem Hydrobiol 27:100Google Scholar
  7. 7.
    Lu J, Zhang T, Ma J, Chen Z (2009) Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. J Hazard Mater 162:140Google Scholar
  8. 8.
    Fox M (1988) Photocatalytic oxidation of organic substances. In: Schiavello M (eds) Photocatalysis and environment: trends and applications. Kluwer Academic, BostonGoogle Scholar
  9. 9.
    Chong M-N, Jin B, Chow Ch, Saint Ch (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997Google Scholar
  10. 10.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331Google Scholar
  11. 11.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69Google Scholar
  12. 12.
    Nolan NT, Seery MK, Pillai SC (2009) Spectroscopic investigation of the anatase-to-rutile transformation of sol-gel-synthesized TiO2 photocatalysts. J Phys Chem C 113:16151Google Scholar
  13. 13.
    Wisitsoraat A, Tuantranont A, Comini E, Sberveglieri G, Wlodarski W (2009) Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films 517:2775Google Scholar
  14. 14.
    Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2014) Why is anatase a better photocatalyst than rutile? – Model studies on epitaxial TiO2 films. Sci Rep 4:4043Google Scholar
  15. 15.
    Testino A, Bellobono IR, Buscaglia V, Canevali C, D’Arienzo M, Polizzi S, Scotti R, Morazzoni F (2007) Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J Am Chem Soc 129:3564Google Scholar
  16. 16.
    Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A (2003) Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions. Mater Sci Eng C 23:707Google Scholar
  17. 17.
    Lee S-Y, Park S-J (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19:1761Google Scholar
  18. 18.
    Augugliaro V, Bellardita M, Loddo V, Palmisano G, Palmisano L, Yurdakal S (2012) Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J Photochem Photobiol C 13:224Google Scholar
  19. 19.
    Nagaveni K, Sivalingam G, Hegde MS, Madras G (2004) Solar photocatalytic degradation of dyes. High activity of combustion synthesized nano TiO2. Appl Catal B Environ 48:83Google Scholar
  20. 20.
    Molinari R, Caruso A, Argurio P, Poerio T (2008) Degradation of the drugs Gemfibrozil and Tamoxifen in pressurized and de-pressurized membrane photoreactors using suspended polycrystalline TiO2 as catalyst. J Memb Sci 319:54Google Scholar
  21. 21.
    Lee DK, Kim SC, Cho IC, Kim SJ, Kim SW (2004) Photocatalytic oxidation of microcystin-LR in a fluidized bed reactor having TiO2-coated activated carbon. Sep Purif Technol 34:59Google Scholar
  22. 22.
    Kruchinin SP, Repetsky SP, Vyshyvana IG (2016) Spin-depent transport of carbon nanotubes with chromium atoms. In: Bonca J, Kruchinin S (eds) Nanomaterials for security. Springer, Dordrecht, pp 65–97Google Scholar
  23. 23.
    Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219:48Google Scholar
  24. 24.
    Mogyorús K, Dékány I, Fendler JH (2003) Preparation and characterization of clay mineral intercalated titanium dioxide nanoparticles. Langmuir 19:2938Google Scholar
  25. 25.
    Tetsuya T, Ko T, Yasuyuki M, Masayuki S (2013) Improving the photocatalytic properties of rayon fibers containing a titanium dioxide photocatalyst through enzymatic treatment. Text Res J 83:1615Google Scholar
  26. 26.
    Hussein FH, Alkhateeb AN (2007) Photo-oxidation of benzyl alcohol under natural weathering conditions. Desalination 209:350Google Scholar
  27. 27.
    Zhang X, Veikko U, Mao J, Cai P, Peng T (2012) Visible-light-induced photocatalytic hydrogen production over binuclear RuII-bipyridyl dye-sensitized TiO2 without noble metal loading. Chem Eur J 18:12103Google Scholar
  28. 28.
    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401Google Scholar
  29. 29.
    Matsui H, Okad K, Kawashim T, Tetsuya E, Tanabe N, Kawano R, Watanabe M (2004) Application of an ionic liquid-based electrolyte to a 100 × 100 mm sized dye-sensitized solar cell. J Photochem Photobiol A 164:129Google Scholar
  30. 30.
    Siefering KL, Griffin GL (1990) Growth kinetics of CVD TiO2: influence of carrier gas. J Electrochem Soc 137:1206Google Scholar
  31. 31.
    Zhang Y, Wan J, Ke Y (2010) A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange. J Hazard Mater 177:750Google Scholar
  32. 32.
    Wang ZM, Sahle-Demessie E, Aly Hassan A, Perrett C (2012) Surface structure and photocatalytic activity of nano-TiO2, TiO2 thin film for selective oxidation. J Environ Eng 138:923Google Scholar
  33. 33.
    Sobczyk-Guzenda A, Pietrzyk B, Szymanowski H, Gazicki-Lipman M, Jakubowski W (2013) Photocatalytic activity of thin TiO2 films deposited using sol–gel and plasma enhanced chemical vapor deposition methods. Ceram Int 39:2787Google Scholar
  34. 34.
    Liu B, Zhao X, Zhao Q, Li C, He X (2005) The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering. Mater Chem Phys 90:207Google Scholar
  35. 35.
    Zhong JB, Lu Y, Jiang WD, Meng QM, He XY, Li JZ, Chen YQ (2009) Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene. J Hazard Mater 168:1632Google Scholar
  36. 36.
    Cullity BD, Stock SR (2014) Elements of X-ray diffraction. Pearson, Harlow. ISBN:1292040548Google Scholar
  37. 37.
    Bensouici F, Souier T, Dakhel AA, Iratni A, Tala-Ighil R, Bououdina M (2015) Synthesis, characterization and photocatalytic behavior of Ag doped TiO2 thin film. Superlattices Microst 85:255CrossRefADSGoogle Scholar
  38. 38.
    Balachandran U, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42:276CrossRefADSGoogle Scholar
  39. 39.
    Nakaruk A, Ragazzon D, Sorrell CC (2010) Anatase–rutile transformation through high-temperature annealing of titania films produced by ultrasonic spray pyrolysis. Thin Solid Films 518:3735CrossRefADSGoogle Scholar
  40. 40.
    Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Solid (B) 15:627CrossRefADSGoogle Scholar
  41. 41.
    Mani Rahulan K, Ganesan S, Aruna P (2011) Synthesis and optical limiting studies of Au-doped TiO2 nanoparticles. Adv Nat Sci Nanosci Nanotechnol 2:025012CrossRefADSGoogle Scholar
  42. 42.
    Rodionov VE, Shnidko IN, Zolotovsky A, Kruchinin SP (2013) Electroluminescence of Y2O3:Eu and Y2O3:Sm films. Mater Sci 31:232Google Scholar
  43. 43.
    Vlaskina S, Kruchinin S, Rodionov V et al (2016) Nanostructures in silicon carbide crystals and films. Inter J Mod Phys B 30(13):1042015CrossRefADSGoogle Scholar
  44. 44.
    Tauster SJ (1987) Strong metal-support interactions. Accounts Chem Res 20:389CrossRefGoogle Scholar
  45. 45.
    Alshammari A, Bagabas A (2015) Semiconductor supported gold nanoparticles for photodegradation of Rhodamine B. Int J Chem Mol Eng 9:47Google Scholar
  46. 46.
    Tan TTY, Yip CK, Beydoun D, Amal R (2003) Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions. Chem Eng J 95:179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • C. Moslah
    • 1
    • 2
  • G. A. Mousdis
    • 1
    Email author
  • M. Kandyla
    • 1
  • G. Petropoulou
    • 1
  • M. Ksibi
    • 2
  1. 1.NHRF–National Hellenic Research FoundationTheoretical and Physical Chemistry Institute-TPCIAthensGreece
  2. 2.Laboratory of Environment Engineering and EcotechnologyENIS, University of SfaxSfaxTunisia

Personalised recommendations