Graphene Quantum Dots, Graphene Non-circular n–p–n-Junctions: Quasi-relativistic Pseudo Wave and Potentials

  • H. V. GrushevskayaEmail author
  • G. G. Krylov
  • S. P. Kruchinin
  • B. Vlahovic
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


In our work, we build an atomic-like GQD-model and look for a GQD pseudopotential barrier, which is given by a set of well pseudopotentials for individual carbon atoms of the GQD. Numerical modelling of large-size GQDs has been performed in hydrodynamic approximation. It has been shown that pseudopotential removes degeneracy of energy levels for GQD-supercell and localizes valent electrons of the GQD-model on holes of n–p–n graphene-junction. Non-spherical symmetry of GQD wave functions leads to lifting of spin and valley degeneracy.


Graphene quantum dots Graphene non-circular n–p–n-junctions GQD-model GQD pseudopotential barrier 


  1. 1.
    Gutiérrez Ch, Brown L, Kim C-J, Park J, Pasupathy AN (2016) Klein tunnelling and electront rapping in nanometre-scale graphene quantum dots. Nat Phys 12:1069CrossRefGoogle Scholar
  2. 2.
    Zhang J, Yu S-H (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19:382CrossRefGoogle Scholar
  3. 3.
    Bogolubov NN, Soldatov NN, Kruchinin SP (2015) The theory of quantum dots in external magnetic field. Quantum Matter 4:352CrossRefGoogle Scholar
  4. 4.
    Soldatov AV, Bogolyubov NN Jr, Kruchinin SP (2006) Method of intermediate problems in the theory of Gaussian quantum dots placed in a magnetic field. Condes Matter Phys 9(1):1Google Scholar
  5. 5.
    Repetsky SP, Vyshyvana IG, Molodkin VB, Kruchinin SP, Lizunov VV (2017) Influence of the adsorbed atoms of potassium on an energy spectrum of graphene. Metallofiz Noveishie Tekhnol 39:1017–1022CrossRefGoogle Scholar
  6. 6.
    Kruchinin SP, Repetsky SP, Vyshyvana IG (2016) Spin-dependent transport of carbon nanotubes with chromium atoms. In: Bonca J, Kruchinin S (eds) Nanpmaterials for security. Springer, Dordrecht, pp 65–97Google Scholar
  7. 7.
    Giavaras G, Nori F (2012) Tunable quantum dots in monolayer graphene. Phys Rev B 85:165446CrossRefADSGoogle Scholar
  8. 8.
    Lee J, Wong D, Velasco J Jr, Rodriguez-Nieva JF, Kahn S, Tsai H-Z, Taniguchi T, Watanabe K, Zettl A, Wang F, Levitov LS, Crommie MF (2016) Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nat Phys 12:1032CrossRefGoogle Scholar
  9. 9.
    Freitag NM, Chizhova LA, Nemes-Incze P, Woods CR, Gorbachev RV, Cao Y, Geim AK, Novoselov KS, Burgdörfer J, Libisch F, Morgenstern M (2016) Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings. Nano Lett 16:5798CrossRefADSGoogle Scholar
  10. 10.
    Maksym PA, Roy M, Craciun MF, Russo S, Yamamoto M, Tarucha S, Aoki H (2010) Proposal for a magnetic field induced graphene dot. J Phys Conf Ser 245:012030CrossRefGoogle Scholar
  11. 11.
    Fock VA (1978) Fundamentals of quantum mechanics. MIR Publishing, MoskouGoogle Scholar
  12. 12.
    Krylova H, Hurski L (2013) Spin polarization in strongly correlated systems. LAP Lambert Academic Publishing. Saarbrücken, GermanyGoogle Scholar
  13. 13.
    Kudryashov VV (2009) Exact wave functions of electron in a quantum dot with account of the Rashba spin-orbit interaction. Int J Nonlin Phen Compl Sys 12:199zbMATHGoogle Scholar
  14. 14.
    Grushevskaya HV, Krylov G (2014) Quantum field theory of graphene with dynamical partial symmetry breaking. J Mod Phys 5:984CrossRefGoogle Scholar
  15. 15.
    Grushevskaya HV, Krylov G (2015) Semimetals with Fermi velocity affected by exchange interactions: two dimensional Majorana charge carriers. Int J Nonlin Phen Compl Sys 18:266MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • H. V. Grushevskaya
    • 1
    Email author
  • G. G. Krylov
    • 1
  • S. P. Kruchinin
    • 2
  • B. Vlahovic
    • 3
  1. 1.Physics DepartmentBelarusian State UniversityMinskBelarus
  2. 2.Bogolyubov Institute for Theoretical PhysicsKievUkraine
  3. 3.North Carolina Central UniversityDurhamUSA

Personalised recommendations