Advertisement

Toxicology of Heterocarbon and Application of Nanoheterocarbon Materials for CBRN Defense

  • G. Kharlamova
  • O. Kharlamov
  • M. Bondarenko
  • P. Silenko
  • O. Khyzhun
  • N. Gubareni
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Nanoheterocarbon materials are widely used in the field of national security (in particular, chemical, biological, radiological, nuclear, explosive (CBRNE) defense), defense, environmental, food and health protection. The growing examples of international terrorist threats against citizens and major infrastructures push to strengthen security measures and the complication of sensing technologies. It requires the development of newer and newer nanomaterials based on carbon molecules and nanostructures modified (doped) by atoms of other elements. However, the toxicity of the most promising nanomaterials for nanosensors, catalysts and other nanodevices based on heterocarbon has not yet been studied enough. Therefore, along with the need to develop new methods for modifying carbon nanostructures with the aim of expanding the scope of their application, the most important task is to study their biocompatibility and potential toxicological effects on the human body.

Keywords

Heterocarbon Nanotoxicology Nanoheterocarbon materials CBRN defense Nanosensors 

References

  1. 1.
    Zaporotskova IV, Boroznina NP, Parkhomenko YN et al (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2:95–105Google Scholar
  2. 2.
    Ewels CP, Glerup M, Krstic V (2008) Nitrogen and boron doping in carbon nanotubes. In: Basiuk VA, Basiuk EV (eds) Chemistry of carbon nanotubes, Part 2. American Scientific Publishers, Stevenson Ranch, pp 2–65Google Scholar
  3. 3.
    Kharlamova G, Kharlamov O, Bondarenko M, Khyzhun O (2016) Hetero-carbon nanostructures as the effective sensors in security systems. In: Bonca J, Kruchinin S (eds) Nanomaterials for security, nato science for peace and security series a: chemistry and biology, chapter 19. Springer, Dordrecht, pp 239–258Google Scholar
  4. 4.
    Kharlamova G, Kharlamov O, Bondarenko M et al (2013) Hetero-carbon: heteroatomic molecules and nano-structures of carbon. In: Vaseashta A, Khudaverdyan S (eds) Advanced sensors for safety and security. Nato science for peace and security series B: physics and biophysics, Part 7. Springer, Dordrecht, pp 339–357Google Scholar
  5. 5.
    Kharlamova G, Kharlamov O, Bondarenko M (2015) Nanosensors in systems of ecological security. In: Bonca J, Kruchinin S (eds) Nanotechnology in the security systems. Nato science for peace and security series C, chapter 20. Environmental Security, Springer, Dordrecht, pp 231–242Google Scholar
  6. 6.
    Kharlamov AI, Kharlamova GA, Bondarenko ME (2013) Preparation of onion-like carbon with high nitrogen content (∼15%) from pyridine. Russ J Appl Chem 86(10):1493–1503Google Scholar
  7. 7.
    Sandoval LM, Martinez H, Terrones M (2004) Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett 386:137–143ADSGoogle Scholar
  8. 8.
    Kharlamov AI, Kharlamova GA, Bondarenko ME (2013) New products of a new method for pyrolysis of pyridine. Russ J Appl Chem 86(2):167–175Google Scholar
  9. 9.
    Zhang J, Lei J, Pan R et al (2011) In situ assembly of gold nanoparticles on nitrogen-doped carbon nanotubes for sensitive immunosensing of microcystin-LR. Chem Commun 47: 668–670Google Scholar
  10. 10.
    Lv R, Li Q, Botello-Méndez AR et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2(586):1–8Google Scholar
  11. 11.
    Wang Y, Shao Y, Matson DW et al (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. Electrochem Biosensing ACS Nano 4(4):1790–1798Google Scholar
  12. 12.
    Kharlamov O, Bondarenko M, Kharlamova G (2015) O-Doped carbon nitride (O-g-C3N) with high oxygen content (11.1 mass%) synthesized by pyrolysis of pyridine. In: Camesano TA (ed) Nanotechnology to aid chemical and biological defense. Nato science for peace and security series A: chemistry and biology, chapter 9. Springer, Dordrecht, pp 129–145Google Scholar
  13. 13.
    Kharlamov AI, Bondarenko ME, Kharlamova GA (2014) New method for synthesis of oxygen-doped graphite-like carbon nitride from pyridine. Russ J Appl Chem 87:1284–1293Google Scholar
  14. 14.
    Kharlamov A, Bondarenko M, Kharlamova G (2016) Method for the synthesis of water-soluble oxide of graphite-like carbon nitride. Diamond Relat Mater 61:46–55ADSGoogle Scholar
  15. 15.
    Kharlamov A, Bondarenko M, Kharlamova G et al (2016) Features of the synthesis of carbon nitride oxide (g-C3N4)O at urea pyrolysis. Diamond Relat Mater 66:16–22ADSGoogle Scholar
  16. 16.
    Kharlamov A, Bondarenko M, Kharlamova G et al (2016) Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O. J Solid State Chem 241:115–120ADSGoogle Scholar
  17. 17.
    Nafise G (2011) CVD synthesis of nitrogen doped carbon nanotubes using iron pentacarbonyl as catalyst. Ph.D. Thesis. University of the Witwatersrand, Johannesburg, p 97Google Scholar
  18. 18.
    Plaza MG, Pevida C, Arenillas A et al (2007) CO2 capture by adsorption with nitrogen enriched carbons. Fuel 86(14):2204–2212Google Scholar
  19. 19.
    Stavropoulos GG, Samaras P, Sakellaropoulos GP (2008) Effect of activated carbons modification on porosity, surface structure and phenol adsorption. J Hazard Mater 151(2–3):414–421Google Scholar
  20. 20.
    Hulicova D, Kodama M, Hatori H (2006) Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater 18(9):2318–2326Google Scholar
  21. 21.
    Lee YF, Chang KH, Hu CC et al (2011) Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem Commun 13:50–53Google Scholar
  22. 22.
    Shao YY, Sui JH, Yin GP et al (2008) Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal B-Environ 79(1–2):89–90Google Scholar
  23. 23.
    Ao Z, Li S (2011) Hydrogenation of graphene and hydrogen diffusion behavior on graphene/graphane interface. In: Gong JR (ed) Graphene simulation. InTech, Croatia, pp 53–74Google Scholar
  24. 24.
    Simon F, Kuzmany H, Fülöp F (2006) Encapsulating C59Nazafullerenes inside single-wall carbon nanotubes. Phys Status Solidi B 243(13):3263–3267ADSGoogle Scholar
  25. 25.
    Cuong NT, Otani M, Iizumi Y et al (2011) Origin of the n-type transport behavior of azafullerene encapsulated single-walled carbon nanotubes. Appl Phys Lett 99(5):053105–053108ADSGoogle Scholar
  26. 26.
    Simon F, Kuzmany H, Bernardi J et al (2006) Encapsulating C59Nazafullerene derivatives inside single-wall carbon nanotubes. Carbon 44:1958–1962Google Scholar
  27. 27.
    Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794Google Scholar
  28. 28.
    Hirata A, Igarashi M, Kaito T (2004) Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles. Tribology Int 37(11–12): 899–905Google Scholar
  29. 29.
    Su DS, Maksimova N, Delgado JJ et al (2005) Nanocarbons in selective oxidative dehydrogenation reaction. Catal Today 102–103:110–114Google Scholar
  30. 30.
    Neidhardt J, Czigany Z, Hultman L (2003) Superelastic fullerene-like carbon nitride coatings synthesised by reactive unbalanced magnetron sputtering. Surf Eng 19(4):299–303Google Scholar
  31. 31.
    Czigany Zs, Brunell IF, Neidhardt J et al (2001) Growth of fullerene-like carbon nitride thin solid films consisting of cross-linked nano-onions. Appl Phys Lett 79(16):2639–2641ADSGoogle Scholar
  32. 32.
    Belz T, Baue A, Find J et al (1998) Structural and chemical characterization of N-doped nanocarbons. Carbon 36(5–6):731–741Google Scholar
  33. 33.
    Gurevich AM, Terekhov AV, Kondrashev DS, Dolbin AV (2006) Low-temperature heat capacity of fullerite C60 doped with nitrogen. Low Temp Phys 32(10):967–969ADSGoogle Scholar
  34. 34.
    Shu C, Lin Y, Su D (2016) N-doped onion-like carbon as an efficient oxygen electrode for long-life Li–O2 battery. J Mater Chem A 4:2128Google Scholar
  35. 35.
    Wu G, Santandreu A, Kellogg W et al (2016) Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29:83–110Google Scholar
  36. 36.
    Wu G, Mack NH, Gao W et al (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. ACS Nano 6:9764–9776Google Scholar
  37. 37.
    Li Q, Pan H, Higgins D et al (2015) Metal–organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts. Small 11:1443–1452Google Scholar
  38. 38.
    Matter PH, Zhang L, Ozkan US et al (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239:83–96Google Scholar
  39. 39.
    Wu G, Nelson M, Ma S et al (2011) Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon 49:3972–3982Google Scholar
  40. 40.
    Lahaye J, Nansé G, Bagreev A et al (1999) Porous structure and surface chemistry of nitrogen containing carbons from polymers. Carbon 37:585–590Google Scholar
  41. 41.
    Wu G, Li D, Dai C et al (2008) Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation. Langmuir 24:3566–3575Google Scholar
  42. 42.
    Wu G, Swaidan R, Li D et al (2008) Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon. Electrochim Acta 53:7622–7629Google Scholar
  43. 43.
    Zhu C, Xu F, Chen J et al (2016) Nitrogen-doped carbon onions encapsulating metal alloys as efficient and stable catalysts for dye-sensitized solar cells. J Power Sources 303:159–167Google Scholar
  44. 44.
    Glerup M, Krstić V, Ewels C et al (2008) Doping of carbon nanotubes. In: Chen W (ed) Doped nanomaterials and nanodevices. American Scientific Publishers, New York, pp 169–242Google Scholar
  45. 45.
    Zanchetta J, Marchand A (1965) Electronic properties of nitrogen doped carbons. Carbon 3:332–332Google Scholar
  46. 46.
    Marchand A, Zanchetta JV (1966) Proprietes electroniques d’un carbone dope a l’azote. Carbon 3:483–491Google Scholar
  47. 47.
    Iijima S (1991) Helical microtubules of graphite carbon. Nature 354:56–58ADSGoogle Scholar
  48. 48.
    Kharlamov AI, Kirillova NV, Zytheva ZA, Golovkova ME (2007) New state of carbon: transparent thread-like anisotropic crystals. Rep Acad Sci Ukraine 5:101–106Google Scholar
  49. 49.
    Radushkevich LV, Lukyanovich VM, (1952) O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn Fisic Chim 26:88–95Google Scholar
  50. 50.
    Monthioux M, Kuznetsov VL (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon 44:1621–1623Google Scholar
  51. 51.
    Khabashesku VN (2011) Covalent functionalization of carbon nanotubes: synthesis, properties and applications of fluorinated derivatives. Russ Chem Rev 80(8):705–725ADSGoogle Scholar
  52. 52.
    Stephen O, Ajayan PM, Colliex C et al (1994) Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266:1683–1685ADSGoogle Scholar
  53. 53.
    Sumpter BG, Meunier V, Romo-Herrera JM et al (2007) Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. ACS Nano 1:369–375Google Scholar
  54. 54.
    Romo-Herrera JM, Sumpter BG, Cullen DA et al (2008) An atomistic branching mechanism for carbon nanotubes: sulfur as the triggering agent. Angew Chem Int Ed 47:2948–2953Google Scholar
  55. 55.
    Hashim DP, Narayanan NT, Romo-Herrera JM et al (2012) Covalently bonded three dimensional carbon nanotube solids via boron induced nanojunctions. Sci Rep 2: 363-1–363-8Google Scholar
  56. 56.
    Lee DH, Lee WJ, Kim SO (2009) Highly efficient vertical growth of wall-number-selected, n-doped carbon nanotube arrays. Nano Lett 9:1427–1432ADSGoogle Scholar
  57. 57.
    Wilder WG, Venema LC, Rinzler AG et al (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62ADSGoogle Scholar
  58. 58.
    Chan LH, Hong KH, Xiao DQ et al (2004) Resolution of the binding configuration in nitrogen-doped carbon nanotubes. Phys Rev B 70:125408–125415ADSGoogle Scholar
  59. 59.
    Pan H, Feng YP, Lin J (2006) Ab initio study of single-wall BC2N nanotubes. Phys Rev B 74:045409–045413ADSGoogle Scholar
  60. 60.
    Schutz D, Droppa R Jr, Alvarezet F et al (2003) Stability of small carbon-nitride heterofullerenes. Phys Rev Lett 90:015501–015504ADSGoogle Scholar
  61. 61.
    Doytcheva M, Kaisera M, Verheijen MA et al (2004) Electron emission from individual nitrogen-doped multi-walled carbon nanotubes. Chem Phys Lett 396:126–130ADSGoogle Scholar
  62. 62.
    Lee JM, Park JS, Lee SH et al (2011) Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B- doped carbon nanotubes. Adv Mater 23:629–633Google Scholar
  63. 63.
    Some S, Kim J, Lee K et al (2012) Highly air stable phosphorus-doped n-type graphene field-effect transistors. Adv Mater 24:5481–5486Google Scholar
  64. 64.
    Gao H, Liu Z, Song L et al (2012) Synthesis of S-doped graphene by liquid precursor. Nanotechnology 23:275605-1–275605-7Google Scholar
  65. 65.
    Xu J, Dong G, Jin C et al (2013) Sulfur and nitrogen co-doped, few layered graphene oxide as a highly efficient electrocatalyst for the oxygen reduction reaction. Chem Sus Chem 6: 493–499Google Scholar
  66. 66.
    Tang C, Bando Y, Golberg D et al (2004) Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide. Carbon 42:2625–2633Google Scholar
  67. 67.
    Terrones M, Terrones H, Grobert N et al (1999) Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures. Appl Phys Lett 75:3932–3934ADSGoogle Scholar
  68. 68.
    Yudasaka M, Kikuchi R, Ohki Y et al (1997) Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition. Carbon 35:195–201Google Scholar
  69. 69.
    Kim SY, Lee J, Na CW et al (2005) N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition. Chem Phys Lett 413:300–305ADSGoogle Scholar
  70. 70.
    Dommele S (2008) Nitrogen doped carbon nanotubes: synthesis, characterization and catalysis. Ph.D. Thesis Utrecht University, UtrechtGoogle Scholar
  71. 71.
    Khavrus VO, Ibrahim EMM, Leonhardt A et al (2008) Simultaneous synthesis and separation of single- and multi-walled CNx nanotubes. CarboCat 9(12):17–18Google Scholar
  72. 72.
    Teddy J (2009) CVD synthesis of carbon nanostructures and their applications as supports in catalysis. Ph.D. Thesis Toulouse University, ToulouseGoogle Scholar
  73. 73.
    Nxumalo EN, Coville NJ (2010) Nitrogen doped carbon nanotubes from organometallic compounds. Rev Mater 3:2141–2171Google Scholar
  74. 74.
    Barreiro A, Hampel S, Rümmeli MH (2006) Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources. J Phys Chem B 110:20973–20977Google Scholar
  75. 75.
    Koós AA, Dillon F, Nicholls RJ et al (2012) N-SWCNTs production by aerosol-assisted CVD method. Chem Phys Lett 538:108–111ADSGoogle Scholar
  76. 76.
    Villalpando-Paez F, Zamudio A, Elias AL et al (2006) Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chem Phys Lett 424:345–352ADSGoogle Scholar
  77. 77.
    Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44:1429–1437Google Scholar
  78. 78.
    Ghosh P, Soga T, Ghosh K et al (2008) Vertically aligned N-doped carbon nanotubes by spray pyrolysis of turpentine oil and pyridine derivative with dissolved ferrocene. J Non-Cryst Solids 354:4101–4106ADSGoogle Scholar
  79. 79.
    Koo’s AA, Dowling M, Jurkschat K et al (2009) Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition. Carbon 47:30–37Google Scholar
  80. 80.
    Li YL, Hou F, Yang ZT et al (2009) The growth of N-doped carbon nanotube arrays on sintered Al2O3 substrates. Mat Sci Eng: B 158:69–74Google Scholar
  81. 81.
    Liu J, Czerw R, Carroll DL (2005) Large-scale synthesis of highly aligned nitrogen doped carbon nanotubes by injection chemical vapor deposition methods. J Mater Res 20:538–543ADSGoogle Scholar
  82. 82.
    Ghosh P, Tanemura M, Soga T et al (2008) Field emission property of N-doped aligned carbon nanotubes grown by pyrolysis of monoethanolamine. Solid State Commun 147:15–19ADSGoogle Scholar
  83. 83.
    Jiang K, Eitan A, Schadler LS et al (2003) Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano Lett 3:275–277ADSGoogle Scholar
  84. 84.
    Lee CJ, Lyu SC, Kim HW et al (2002) Synthesis of bamboo-shaped carbon–nitrogen nanotubes using C2H2–NH3–Fe(CO)5 system. Chem Phys Lett 359:115–120ADSGoogle Scholar
  85. 85.
    Liu J, Webster S, Carroll DL (2005) Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method. J Phys Chem B 109:15769–15774Google Scholar
  86. 86.
    Sen R, Satishkumar BC, GovindaraJ A et al (1997) Nitrogen-containing carbon nanotubes. J Mater Chem 7:2335–2337Google Scholar
  87. 87.
    Liang EJ, Ding P, Zhang HR et al (2004) Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine. Diamond Relat Mater 13:69–73ADSGoogle Scholar
  88. 88.
    Cao C, Huang F, Cao C et al (2004) Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route. Chem Mater 16:5213–5215Google Scholar
  89. 89.
    Bill J, Riedel R (1992) Boron carbide nitride derived from amine-boranes. Mater Res Soc Symp Proc 271:839–844Google Scholar
  90. 90.
    Suenaga K, Colliex C, Demoncy N et al (1997) Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon. Science 278:653–655ADSGoogle Scholar
  91. 91.
    Zhang Y, Gu H, Suenaga K et al (1997) Heterogeneous growth of BCN nanotubes by laser ablation. Chem Phys Lett 279:264–269ADSGoogle Scholar
  92. 92.
    Glenis S, Cooke S, Chen X et al (1994) Photophysical properties of fullerenes prepared in an atmosphere of pyrrole. Chem Mater 6:1850–1853Google Scholar
  93. 93.
    Pradeep T, Vijayakrishnan V, Santa AK et al (1991) Interaction of nitrogen with fullerenes: nitrogen derivatives of C60 and C70. J Phys Chem 95:10564–10565Google Scholar
  94. 94.
    Droppa R Jr, Hammer P, Carvalho ACM et al (2002) Incorporation of nitrogen in carbon nanotubes. J Non-Cryst Solids 299:874–879ADSGoogle Scholar
  95. 95.
    Glerup M, Steinmetz J, Samaille D et al (2004) Synthesis of N-doped SWNT using the arc-discharge procedure. Chem Phys Lett 387:193–197ADSGoogle Scholar
  96. 96.
    Goldberg D, Bando Y, Bourgeois L et al (2000) Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles. Carbon 38:2017–2027Google Scholar
  97. 97.
    Morant C, Andrey J, Prieto P et al (2006) XPS characterization of nitrogen-doped carbon nanotubes. Physica Status Solidi A 203:1069–1075ADSGoogle Scholar
  98. 98.
    Kruchinin SP, Repetsky SP, Vyshyvana IG (2016) Spin-depent transport of carbon nanotubes with chromium atoms. In: Bonca J, Kruchinin S (eds) Nanomaterials for Security. Springer, pp 65–97Google Scholar
  99. 99.
    Ermakov V, Kruchinin S, Hori H, Fujiwara A (2007) Phenomena of strong electron correlastion in the resonant tunneling. Int J Mod Phys B 11:827–835Google Scholar
  100. 100.
    Kruchinin S, Pruschke T (2014) Thermopower for a molecule with vibrational degrees of freedom. Phys Lett A 378:157–161Google Scholar
  101. 101.
    Ermakov V, Kruchinin S, Pruschke T, Freericks J (2015) Thermoelectricity in tunneling nanostructures. Phys Rev B 92:115531Google Scholar
  102. 102.
    Maultzsch J, Reich S, Thomsen C, Webster S et al (2002) Raman characterization of boron-doped multiwalled carbon nanotubes. Appl Phys Lett 81(14):2647–2649ADSGoogle Scholar
  103. 103.
    Mondal KC, Coville NJ, Witcomb MJ et al (2007) Boron mediated synthesis of multiwalled carbon nanotubes by chemical vapor deposition. Chem Phys Lett 437:87–91ADSGoogle Scholar
  104. 104.
    Chen CF, Tsai CL, Lin CL (2003) The characterization of boron-doped carbon nanotube arrays. Diam Rel Mater 12(9):1500–1504Google Scholar
  105. 105.
    Sharma RB, Late DJ, Joag DS et al (2006) Field emission properties of boron and nitrogen doped carbon nanotubes. Chem Phys Lett 428(1–3):102–108ADSGoogle Scholar
  106. 106.
    Ceragioli HJ, Peterlevitz AC, Quispe JC et al (2008) Synthesis and characterization of boron-doped carbon nanotubes. J Phys Conf Ser 100(5):1–4Google Scholar
  107. 107.
    Okotrub AV, Bulusheva LG, Kudashov AG et al (2008) Arrays of carbon nanotubes aligned perpendicular to the substrate surface: anisotropy of structure and properties. Nanotechnol Russ 3:191–200Google Scholar
  108. 108.
    Ishii S, Watanabe T, Ueda S et al (2008) Resistivity reduction of boron-doped multi-walled carbon nanotubes synthesized from a methanol solution containing a boric acid. Appl Phys Lett 92(20):202116–202116-3Google Scholar
  109. 109.
    McGuire K, Gothard N, Gai PL et al (2005) Synthesis and raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43:219–227Google Scholar
  110. 110.
    Goldberg D, Bando Y, Han W et al (1999) Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chem Phys Lett 308:337–342ADSGoogle Scholar
  111. 111.
    Guo M, Huang J, Kong X et al (2016) Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries. New Carbon Mater 31(3):352–362Google Scholar
  112. 112.
    Larrude DG, Maia da Costa MEH, Monteiro FH et al (2012) Characterization of phosphorus-doped multiwalled carbon nanotubes. J Appl Phys 111(6):064315-064315-6Google Scholar
  113. 113.
    Patiño J, López-Salas N, Gutiérrez MC et al (2016) Phosphorus-doped carbon–carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. J Mater Chem A 4:1251–1263Google Scholar
  114. 114.
    Cui T, Lv R, Huang Z et al (2011) Effect of sulfur on enhancing nitrogen-doping and magnetic properties of carbon nanotubes. Nanoscale Res Lett 6(77):1–6ADSGoogle Scholar
  115. 115.
    Kucukayan G, Ovali R, Ilday S et al (2011) An experimental and theoretical examination of the effect of sulfur on the pyrolytically grown carbon nanotubes from sucrose-based solid state precursors. Carbon 49:508–517Google Scholar
  116. 116.
    Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669ADSGoogle Scholar
  117. 117.
    Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453ADSGoogle Scholar
  118. 118.
    Geim AK, Novoselov KS (2007) The rise of grapheme. Nat Mater 6:183–191ADSGoogle Scholar
  119. 119.
    Repetsky SP, Vyshyvana IG, Kruchinin SP, Molodkin VB, Lizunov VV (2017) Influence of the adsorbed atoms of potassium on an energy spectrum of grapheme. Metallofiz Noveishie Tekhnol 39:1017–1022Google Scholar
  120. 120.
    Hu Y, Sun X (2013) Chemically functionalized graphene and their applications in electrochemical energy conversion and storage. In: Aliofkhazraei M (Ed.) Advances in Graphene Science, chapter 7. InTech, pp 161–189Google Scholar
  121. 121.
    Wei D, Liu Y, Wang Y (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758ADSGoogle Scholar
  122. 122.
    Luo Z, Lim S, Tian Z et al (2011) Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J Mater Chem 21:8038–8044Google Scholar
  123. 123.
    Chernozatonskii LA, Sorokin PB, Artukh AA (2014) Novel graphene-based nanostructures: physicochemical properties and applications. Russ Chem Rev 83(3):251–279ADSGoogle Scholar
  124. 124.
    Wei D, Liu Y, Wang Y et al (2009) Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett 9(2):666–671Google Scholar
  125. 125.
    Usachov D, Vilkov O, Gruneis A et al (2011) Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett 11(12):5401–5407ADSGoogle Scholar
  126. 126.
    Zhang LS, Liang XQ, Song W et al (2010) Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Chem Chem Phys 12:12055–12059Google Scholar
  127. 127.
    Long D, Li W, Ling L et al (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102Google Scholar
  128. 128.
    Jeong HM, Lee JW, Shin WH et al (2011) Nitrogen-doped graphene for high performance ultracapacitors and the importance of nitrogen-doped sites at basal-planes. Nano Lett 11:2472–2477ADSGoogle Scholar
  129. 129.
    Sun L, Tian C, Tan T (2012) Nitrogen-doped graphene with high nitrogen level via a one step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2:4498–4506Google Scholar
  130. 130.
    Geng D, Chen Y, Chen Y et al (2011) High oxygen-reduction activity and durability of nitrogen-doped grapheme. Energy Environ Sci 4:760–764Google Scholar
  131. 131.
    Imran JR, Rajalakshmi N, Ramaprabhu S (2010) Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem 20:7114–7117Google Scholar
  132. 132.
    Wang DW, Gentle IR, Lu GQ (2010) Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. Electrochem Commun 12:1423–1427Google Scholar
  133. 133.
    Li N, Wang Z, Zhao K (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259Google Scholar
  134. 134.
    Panchokarla L, Subrahmanyam K, Saha S (2009) Synthesis, structure and properties of boron and nitrogen doped grapheme. Adv Mater 21(46):4726Google Scholar
  135. 135.
    Kim H, Kim H (2006) Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere. Mater Sci Eng B 133(1–3):241–244Google Scholar
  136. 136.
    Zhang C, Fu L, Liu N et al (2011) Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater 23:1020–1024Google Scholar
  137. 137.
    Guo B, Liu Q, Chen E et al (2010) Controllable N-doping of grapheme. Nano Lett 10(12):4975–4980ADSGoogle Scholar
  138. 138.
    Kinoshita K (1988)Carbon: electrochemical and physicochemical properties. Wiley, New YorkGoogle Scholar
  139. 139.
    Wang X, Li X, Zhang L et al (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771ADSGoogle Scholar
  140. 140.
    Lia N, Wang Z, Zhao K et al (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259Google Scholar
  141. 141.
    Panchakarla LS, Subrahmanyam KS, Saha SK et al (2009) Synthesis, structure, and properties of boron- and nitrogen-doped grapheme. Adv Mater 21(46):994726–994730Google Scholar
  142. 142.
    Shao Y, Zhang S, Engelhard MH et al (2010) Nitrogen-doped graphene and its electrochemical applications. Mater Chem 20:7491–7494Google Scholar
  143. 143.
    Lin YC, Lin CY, Chiu PW (2010) Controllable graphene N-doping with ammonia plasma. Appl Phys Lett 96:133110–133113ADSGoogle Scholar
  144. 144.
    Lin T, Huang F, Jiang J (2012) A facile preparation route for boron-doped graphene, and its CdTe solar cell application. Energy Environ Sci 4(3):862–865Google Scholar
  145. 145.
    Yang Z, Yao Z, Li G (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6(1):205–211Google Scholar
  146. 146.
    Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Lett Nature 359:707–709ADSGoogle Scholar
  147. 147.
    Hultman L, Stafström S, Czigány Z et al (2001) Cross-linked nano-onions of carbon nitride in the solid phase: aza-fullerene. Phys Rev Lett 8722(22):225503-1–225503-4Google Scholar
  148. 148.
    Kharlamov O, Bondarenko M, Khyzhun O, Kharlamova G (2016) Anthology and genesis of nanodimensional objects and GM food as the threats for human security. In: Bonca J, Kruchinin S (eds) Nanomaterials for security. NATO science for peace and security series A: chemistry and biology, chapter 24. Springer, Dordrecht, pp 297–310Google Scholar
  149. 149.
    Kharlamov O, Bondarenko M, Kharlamova G et al (2015) Nanoecological security of foodstuffs and human. In: Bonca J, Kruchinin S (eds) Nanotechnology in the security systems. NATO science for peace and security series C: environmental security, chapter 19. Springer, Dordrecht, pp 215–229Google Scholar
  150. 150.
    Ermakov V, Kruchinin S, Fujiwara A (2008) Electronic nanosensors based on nanotransistor with bistability behaviour. In: Bonca J, Kruchinin S (eds) Proceedings of NATO ARW “Electron Transport in Nanosystems”. Springer, pp 341–349Google Scholar
  151. 151.
    Donaldson K, Aitken R, Tran L et al (2006) Carbon nanotubes: review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22Google Scholar
  152. 152.
    Volder MFL, Tawfick SH, Baughman RH et al (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539ADSGoogle Scholar
  153. 153.
    Wadhwa S, Rea C, O’Hare P et al (2011) Comparative in vitro cytotoxicity study of carbon nanotubes and titania nanostructures on human lung epithelial cell. J Hazardous Matter 191(1–3):56–61Google Scholar
  154. 154.
    Cui SD, Tian F, Ozkan CS et al (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85Google Scholar
  155. 155.
    Kartel MT, Ivanov LV, Kovalenko SN, Tereschenko VP (2011) Carbon nanotrubes: biorisks and biodefence. In: Mikhalovsky S, Khajibaev A (eds) Biodefence. NATO science for peace and security series A: chemistry and biology. Springer, Dordrecht, pp 11–22Google Scholar
  156. 156.
    Jia G, Wang HF, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube and fullerene. Env Sci Technol 39:1378–1383Google Scholar
  157. 157.
    Mendes RG, Koch B, Bachmatiuk A et al (2015) A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J Mater Chem B 12(3):2522–2529Google Scholar
  158. 158.
    Singh R, Pantarotto D, Lacerda L et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. PNAS 103:3357–3362ADSGoogle Scholar
  159. 159.
    Muller FHJ, Moreau N, Missonet P et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231Google Scholar
  160. 160.
    Carrero-Sanchez JC, Mancilla R, Arrellin G et al (2006) Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett 6:1609–1616ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • G. Kharlamova
    • 1
  • O. Kharlamov
    • 2
  • M. Bondarenko
    • 2
  • P. Silenko
    • 2
  • O. Khyzhun
    • 2
  • N. Gubareni
    • 2
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Frantsevich Institute for Problems of Materials Science of NASUKievUkraine

Personalised recommendations