Advertisement

Nanosensor Devices for CBRN-Agents Detection: Theory and Design

  • Yu. ShuninEmail author
  • S. Bellucci
  • V. Gopeynko
  • T. Lobanova-Shunina
  • A. Kiv
  • D. Fink
  • A. Mansharipova
  • R. Mukhamediyev
  • Yu. Zhukovskii
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Pressing challenges of recent decades, associated with agents that are aggressive towards humans – substances and radiation of chemical, biological, radiological, and nuclear (CBRN) agents – require scientific and technological responses. These responses lie in the areas of agent detection and protection from them. The mentioned bio destructive agents can be divided into 2 groups: (1) chemical and biochemical, and (2) radiative (leading to chemical destruction of biomass). In this study, we consider models of universal track nanosensors that are capable of producing a correlated electrical response to the flow of active agents.

Keywords

CBRN-agents Agents detection Nanotrack based bionanosensor Nanotrack based devices for CBRN-agents detection Enzymatic detection tools 

Notes

Acknowledgements

This research has been partially supported by grant ‘Nanostructures for bacteria detection and study’ (NANOBAC) (01.10.2015-31.12.2017) the Ministry of Education and Science of the Republic of Kazakhstan (2015–2017), the Research Division of Ventspils University College (Latvia), Ben-Gurion University (Israel).

References

  1. 1.
    Kumar V, Goel R, Chawla R, Silambarasan M, Sharma RK et al (2010) Chemical, biological, radiological, and nuclear decontamination: recent trends and future perspective. J Pharm Bioallied Sci 2(3):220Google Scholar
  2. 2.
    Sinclair DW (2003) Relative biological effectiveness (RBE), quality factor (Q) and radiation weighting factor (Wr). Ann ICRP 33(4):92Google Scholar
  3. 3.
    Fink D, Klinkovich I, Bukelman O, Marks RS, Kiv A, Fuks D, Fahrner WR, Alfonta L (2009) Glucose determination using a re-usable enzyme-modified ion track membrane sensor. Biosens Bioelectron 24:2702–2706Google Scholar
  4. 4.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814Google Scholar
  5. 5.
    Fink D, Kiv A, Shunin Y, Mykytenko N, Lobanova-Shunina T, Mansharipova A, Koycheva T, Muhamediyev R, Gopeyenko V, Burlutskaya N, Zhukovskii Y, Bellucci S (2015) The nature of oscillations of ion currents in the ion track electronics. Comput Model New Technol 19(6):7Google Scholar
  6. 6.
    Fink D, Muñoz HG, Alfonta L, Mandabi Y, Dias JF, de Souza CT, Bacakova LE, Vacík J, Hnatowicz V, Kiv AE, Fuks D, Papaleo RM (2012) Status and perspectives of ion track electronics for advanced biosensing. In: Shunin Yu, and Kiv A (eds) Nanodevices and nanomaterials for ecological security. Series: NATO science for peace series B – physics and biophysics. Springer, Heidelberg, p 269Google Scholar
  7. 7.
    Shunin Yu, Alfonta L, Fink D, Kiv A, Mansharipova A, Muhamediyev R, Zhukovskii Yu, Lobanova-Shunina T, Burlutskaya N, Gopeyenko V, Bellucci S (2016) Modelling and simulation of electric response of nanocarbon nanocomposites and nanoporous polymer based structures for nanosensor devices. In: Theses of the 14th international scientific conference information technologies and management, 14–15 Apr 2016. ISMA University Riga Latvia, p 11. http://isma.lv/FILES/SCIENCE/IT&M2016_THESES/NN/01_IT&M2016_Shunin.pdf
  8. 8.
    Shunin Yu, Fink D, Kiv A, Alfonta L, Mansharipova A, Muhamediyev R, Zhukovskii Yu, Lobanova-Shunina T, Burlutskaya N, Gopeyenko V, Bellucci S (2016) Theory and modelling of physical and bio-nanosensor systems. In: Proceedings of the 5th international workshop nanocarbon photonics and optoelectronics, 1–6 Aug 2016. Lappeeranta, p 101. http://www.npo.fi/documents/409792/994899/Yury_Shunin.pdf/08431866-6f2c-4624-a4c9-9614dea5f747
  9. 9.
    Ermakov V, Kruchinin S, Fujiwara A (2008) Electronic nanosensors based on nanotransistor with bistability behaviour. In: Bonca J and Kruchinin S (eds) Proceedings of NATO ARW “Electron transport in nanosystems”. Springer, Dordrecht, pp 341–349Google Scholar
  10. 10.
    Ermakov V, Kruchinin S, Hori H, Fujiwara A (2007) Phenomena of strong electron correlastion in the resonant tunneling. Int J Mod Phys B 11:827–835Google Scholar
  11. 11.
    Fink D, Muñoz HG, Alfonta L, Mandabi Y, Dias JF, de Souza CT, Bacakova LE, Vacík J, Hnatowicz V, Kiv AE, Fuks D, Papaleo RM (2012) Status and perspectives of ion track electronics for advanced biosensing. In: Shunin Yu, Kiv A (eds) Nanodevices and nanomaterials for ecological security. Series: NATO science for peace series B – physics and biophysics. Springer, Heidelberg, p 269Google Scholar
  12. 12.
    Fink D, Vacík J, Hnatowicz V, Muñoz HG, Garcia-Arrellano H, Alfonta L, Kiv A (2017) Diffusion kinetics of the Glucose/Glucose Oxidase system in swift heavy ion track-based biosensors. Nucl Instr Meth B 398:21CrossRefADSGoogle Scholar
  13. 13.
    Nakhleh MK, Amal H, Jeries R et al (2017) Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano 11:112CrossRefGoogle Scholar
  14. 14.
    Wang Ch, Sahay P (2009) Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors 9:8230CrossRefGoogle Scholar
  15. 15.
    Types of Chemical Weapons. FAS-Federation of American Scientists. http://fas.org/cw/documents/cwagents.pdf
  16. 16.
    Aziz A, Palleschi G (2004) Phoshate, nitrate, and sulfate biosensors. Anal Lett 37(1):1CrossRefGoogle Scholar
  17. 17.
    Shunin Yu, Kiv A (eds) (2012) Nanodevices and nanomaterials for ecological security. Springer, HeidelbergGoogle Scholar
  18. 18.
    Fink D (eds) (2004) Fundamentals of ion-irradiated polymers, vol 63. Springer, BerlinGoogle Scholar
  19. 19.
    Shunin Yu, Bellucci S, Gruodis A, Lobanova-Shunina T (2017) Nonregular nanosystems. theory and applications. Springer, Heidelberg. in printGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yu. Shunin
    • 1
    • 2
    Email author
  • S. Bellucci
    • 3
  • V. Gopeynko
    • 4
    • 5
  • T. Lobanova-Shunina
    • 6
  • A. Kiv
    • 7
  • D. Fink
    • 8
  • A. Mansharipova
    • 9
  • R. Mukhamediyev
    • 9
  • Yu. Zhukovskii
    • 1
  1. 1.Institute of Solid State Physics of the University of LatviaRigaLatvia
  2. 2.Ventspils University CollegeVentspilsLatvia
  3. 3.INFN-Laboratori Nazionali di FrascatiFrascati-RomeItaly
  4. 4.ISMA UniversityRigaLatvia
  5. 5.Ventspils University CollegeVentspilsLatvia
  6. 6.Faculty of Mechanical Engineering, Transport and AeronauticsRiga Technical UniversityRigaLatvia
  7. 7.Department of Materials EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  8. 8.Departamento de FisicaUniversidad Autónoma Metropolitana-IztapalapaMéxicoMéxico
  9. 9.Kazakh-Russian Medical UniversityAlmatyKazakhstan

Personalised recommendations