Advertisement

Sr-Substituted Barium Titanate Glass Ceramics from Oxide Glasses As Potential Material for Sensor Preparation

  • Ruzha Harizanova
  • Liliya Vladislavova
  • Christian Bocker
  • Georgi Avdeev
  • Christian Rüssel
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The present work reports on the synthesis of glasses in the system Na2O/Al2O3/BaO/SrO/TiO2/B2O3/SiO2/Fe2O3 from which, after appropriate thermal treatment, barium titanate and strontium-substituted barium titanate glass-ceramics are crystallized. The characteristic temperatures of the glasses are determined by differential scanning calorimetry DSC and show that higher alumina concentrations result in the stabilization of the glass network while an increasing Sr-concentration at constant alumina concentrations leads to a decrease of the glass transition temperature. The phase composition of the prepared materials was analysed by X-ray diffraction and shows precipitations of cubic barium titanate, BaTiO3 and strontium-substituted barium titanate, Ba1-xSrxTiO3. For isothermal treatments and longer annealing times, an additional crystalline phase occurs, i.e. fresnoite (Ba2TiSi2O8). The microstructure investigations of the glass ceramics by scanning electron microscopy witness the occurrence of globular bright crystals enriched in the heavier elements, here Ba, Sr and Ti.

Keywords

Barium-strontium titanate Glass-ceramics Phase separation Crystallization Sensors 

Notes

Acknowledgments

This work is financially supported by contract NIS 11 663, Scientific sector of UCTM, Bulgaria and contract DN08/13, Bulgarian National Scientific Fund.

References

  1. 1.
    Zhang F, Shi Y, Zhao Z, Ma B, Wei L, Lu L (2014) Amino-functionalized Fe3O4/SiO2 magnetic submicron composites and In3+ ion adsorption properties. J Mater Sci 49:3478–3483ADSCrossRefGoogle Scholar
  2. 2.
    Libor Z et al (2011) Rheological properties of magnetic and electro-active nanoparticles in non-polar liquids. J Mater Sci 46:5385–5393ADSCrossRefGoogle Scholar
  3. 3.
    Capsal JF et al (2010) Nanotexture influence of BaTiO3 particles on piezoelectric behaviour of PA 11/BaTiO3 nanocomposites. J Non-Cryst Solids 356:629–634ADSCrossRefGoogle Scholar
  4. 4.
    Joshi U, Yoon S, Baik S, Lee JS (2006) Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. J Phys Chem B 110:12249CrossRefGoogle Scholar
  5. 5.
    Maiti RP, Basu S, Bhattacharya S (2009) Multiferroic behavior in silicate glass nanocomposite having a core–shell microstructure. J Non-Cryst Solids 355:2254–2259ADSCrossRefGoogle Scholar
  6. 6.
    Du G (2010) P et al, Effects of niobium donor doping on the phase structures and magnetic properties of Fe doped BaTiO3 ceramics. J Alloys Compd 492:L79–L81CrossRefGoogle Scholar
  7. 7.
    Vijatović MM, Bobić JD, Stojanović BD (2008) History and challenges of barium titanate: part II. Sci Sinter 40:235–244CrossRefGoogle Scholar
  8. 8.
    Smith MB, Page K, Siegrist T, Redmond PL, Walter EC, Seshadri R, Brus LE, Steigerwald ML (2008) Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J Am Chem Soc 130:6955–6963CrossRefGoogle Scholar
  9. 9.
    Ridha NJ, Mahmood W, Yunus M, Halim SA, Talib ZA (2009) Effect of Sr substitution on structure and thermal diffusivity of Ba1-xSrxTiO3 ceramic. Am J Eng Appl Sci 2(4):661–664CrossRefGoogle Scholar
  10. 10.
    Lemans VV, Smirnova EP, Syrnikov PP, Tarakanov EA (1996) Phase transitions and glasslike behavior in Sr1-xBaxTiO3. Phys Rev 54(5):3151–3157. 0163-1829/96/54ADSCrossRefGoogle Scholar
  11. 11.
    Dobal PS, Dixit A, Katiyar RS, Yu Z, Guo R, Bhalla AS (2001) Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3 –BaZrO3 system. J Appl Phys 89:8085–8091ADSCrossRefGoogle Scholar
  12. 12.
    Yoon MS, Ur SC (2008) Effects of A-site Ca and B-site Zr substitution on dielectric properties and microstructure in tin-doped BaTiO3 –CaTiO3 composites. Ceram Int 34:1941–1948CrossRefGoogle Scholar
  13. 13.
    Yamada H, Miller GR (1973) Point defects in reduced strontium titanate. J Solid State Chem 6:169–177ADSCrossRefGoogle Scholar
  14. 14.
    Harizanova R, Mazhdrakova A, Vladislavova L, Avdeev G, Bocker C, Gugov I, Rüssel C (2015) Crystallization behaviour of the systems Na2O/BaO/TiO2/SiO2/B2O3/Al2O3 and Na2O/BaO/TiO2/SiO2/B2O3/Fe2O3/Al2O3. J Chem Technol Metall 50:375Google Scholar
  15. 15.
    Harizanova R, Tatchev D, Avdeev G, Bocker C, Karashanova D, Mihailova I, Gugov I, Rüssel C (2017) Investigation on the crystallization behaviour of sodium-aluminoborosilicate glasses with high concentrations of Ba and Ti. Bulg Chem Commun 49:119–125Google Scholar
  16. 16.
    Buscaglia V, Buscaglia MT, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorny J, Petzelt J (2006) Grain size and grain boundary-related effects on the properties of nanocrystalline barium titanate ceramics. J Eur Ceram Soc 26:2889–2898CrossRefGoogle Scholar
  17. 17.
    Vogel W (1985) Glass chemistry, 2nd edn. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ruzha Harizanova
    • 1
  • Liliya Vladislavova
    • 1
    • 2
  • Christian Bocker
    • 2
    • 3
  • Georgi Avdeev
    • 4
  • Christian Rüssel
    • 2
  1. 1.Department of PhysicsUniversity of Chemical Technology and MetallurgySofiaBulgaria
  2. 2.Otto Schott InstituteUniversity of JenaJenaGermany
  3. 3.j-fiber GmbHJenaGermany
  4. 4.Institute of Physical Chemistry, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations