Advertisement

Green Synthesis of Silver Nanoparticles and Their Application in Thin Polymer Films

  • Zhana Petkova
  • Irena Kostova
  • Ginka Antova
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The focus of the present study is on synthesis procedures, morphology and application of silver nanoparticles (AgNPs). A green synthesis approach was performed with aqueous extracts from lawn grass and parsley (Petroselinum crispum Mill.), both of them microwave assisted. The formation of the silver nanoparticles was observed using UV-Vis spectroscopy (Boeco S26 spectrophotometer); they were characterized by transmission electron microscopy (TEM). The absorption spectra show peaks in the range 380–400 nm for all products. The TEM images depicted that the synthesis method yield nanoparticles with spherical shape and different size. This gives rise for a wide range of application of AgNPs which may be used as additives in papers and polymers due to their antimicrobial properties which depend on particle size and shape.

Keywords

Green synthesis Silver nanoparticles Lawn grass Parsley 

Notes

Acknowledgments

The authors are grateful to Dr. Sotir Sotirov, University of Plovdiv ‘Paisii Hilendarski’, Faculty of Physics for AFM analysis. The study was carried out with the support of MU17HF024.

References

  1. 1.
    Jain D, Kumar Daima H, Kachhwaha S, Kothari SL (2009) Dig J Nanomater Biostruct 4(3):557Google Scholar
  2. 2.
    Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Spectrochim Acta A Mol Biomol Spectrosc 79:594ADSCrossRefGoogle Scholar
  3. 3.
    Song JY, Kim BS (2009) Bioprocess Biosyst Eng 32:79CrossRefGoogle Scholar
  4. 4.
    Badri Narayanan K, Sakthivel N (2008) Mater Lett 62:4588CrossRefGoogle Scholar
  5. 5.
    Prathap Chandran S, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Biotechnol Prog 22:577CrossRefGoogle Scholar
  6. 6.
    Dubey SP, Lahtinen M, Sarkka H, Sillanpaa M (2010) Colloids Surf B: Biointerfaces 80:26CrossRefGoogle Scholar
  7. 7.
    Philip D, Unni C, Aswathy Aromal S, Vidhu VK (2011) Spectrochim Acta A Mol Biomol Spectrosc 78(2):899ADSCrossRefGoogle Scholar
  8. 8.
    Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) J Saudi Chem Soc 15:113CrossRefGoogle Scholar
  9. 9.
    Kostova I, Nachkova S, Tonchev D, Kasap S (2015) In: Petkov P, Tsiulyanu D, Kulisch W, Popov C (eds) Nanoscience advances in CBRN agents detection, information and energy security, NATO science for peace and security Series A: Chemistry and Biology. Springer, Dordrecht, p 175Google Scholar
  10. 10.
    Shankar SS, Rai A, Ahmad A, Sastry M (2004) J Colloid Interface Sci 275:496ADSCrossRefGoogle Scholar
  11. 11.
    Raut RW, Lakkakula JR, Kolekar NS, Mendhulkar VD, Kashid SB (2009) Curr Nanosci 5(1):117ADSCrossRefGoogle Scholar
  12. 12.
    Roy K, Sarkar CK, Ghosh CK (2015) Appl Nanosci 5:945ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Zhana Petkova
    • 1
  • Irena Kostova
    • 1
  • Ginka Antova
    • 1
  1. 1.Department of Chemical TechnologyUniversity of Plovdiv ‘Paisii Hilendarski’PlovdivBulgaria

Personalised recommendations