Dielectric Relaxation in Biocomposites Based on Olive Pomace Grains

  • L. Kreit
  • Z. Samir
  • I. Bouknaitir
  • A. Triki
  • M. E. Achour
  • L. C. Costa
  • A. Kallel
  • A. Oueriagli
  • M. Mabrouki
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


A polyester polymer matrix filled with olive-pomace grains was investigated using impedance spectroscopy in the frequency range 100 Hz to 1 MHz and temperatures from 300 to 360 K. Two relaxations processes were identified. One could be attributed to the α relaxation associated with the glass transition and observed in the neat matrix, while the second was attributed to the accumulation of charges at the pomace grains/polyester interfaces. The relaxation parameters were evaluated from isothermal dielectric spectra by applying the empirical Havriliak-Negami function.


Biocomposites Dielectric relaxation Havriliak-Negami function 



The authors acknowledge support from CNRST-Maroc (Centre National de la Recherche Scientifique et Technique) and the FCT-CNRST bilateral cooperation, and FEDER by funds through the COMPETE 2020 Program and National Funds through FCT – Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013.


  1. 1.
    Hodzic A, Shanks R (2014) Natural fibre composites, materials, processes, and properties, 1st edn. Woodhead Publishing Series in Composites Science and Engineering, CambridgeGoogle Scholar
  2. 2.
    Belgacem MN, Gandini A (2005) Physical, chemical and physico-chemical modification of cellulose fibers. Compos Interfaces 12:41–75Google Scholar
  3. 3.
    Marcovich NE, Aranguren MI, Reboredo MM (2001) Polym J 42(2):815–825CrossRefGoogle Scholar
  4. 4.
    Nunez AJ, Kenny JM, Reboredo MM (2002) Polym Eng Sci 42:733–742CrossRefGoogle Scholar
  5. 5.
    Marcovich NE, Reboredo MM, Aranguren MI (2005) Compos Interfaces 12:3–24CrossRefGoogle Scholar
  6. 6.
    Belgacem MN, Gandini A (2005) Surface modification of cellulose fibres. Polím Ciência e Tecnol 15:114–121Google Scholar
  7. 7.
    Mohanty AK, Misra M, Drzal LT (eds) (2005) Natural fibers, biopolymers and biocomposites. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  8. 8.
    Joseph S, Jacob M, Thomas S (2005) Natural fibers, biopolymers and biocomposites. CRC Press, Taylor & Francis Group, Boca Raton, pp 435–472Google Scholar
  9. 9.
    Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274Google Scholar
  10. 10.
    Eichhorn SJ, Baillie CA, Zafeiropoulos N, Mwaikambo LY, Ansell MP, Dufresne A, Entwistle KM, Herrera-Franco PJ, Escamilla GC, Groom L, Hughes M, Hill C, Rials TG, Wild PM (2001) J Mater Sci 36:2107–2131ADSCrossRefGoogle Scholar
  11. 11.
    Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K (2010) Compos Sci Technol 70(5):854–860CrossRefGoogle Scholar
  12. 12.
    El Hasnaoui M, Triki A, Graça MPF, Achour ME, Costa LC, Arous M (2012) J Non-Cryst Solids 358:2810–2815ADSCrossRefGoogle Scholar
  13. 13.
    Ben Amor I, Rekik H, Kaddami H, Raihane M, Arous M, Kallel A (2009) Studies of dielectric relaxation in natural fiber- polymer composites. J Electrost 67:717–722Google Scholar
  14. 14.
    McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects. J Appl Polym Sci 13:617Google Scholar
  15. 15.
    Tsangaris GM, Psarras GC, Kontopoulos AJ (1991) Dielectric permittivity and loss of an aluminum- filled epoxy resin. J Non-Cryst Solids 131–133(2):1164–1168Google Scholar
  16. 16.
    Chand N, Jain D (2005) Compos Part A Appl Sci Manuf 36:594–602CrossRefGoogle Scholar
  17. 17.
    Tsangaris GM, Psarras GC, Kouloumbi N (1998) J Mater Sci 33:2027–2037ADSCrossRefGoogle Scholar
  18. 18.
    Moynihan CT (1994) J Non-Cryst Solids 172–174:1395–1407ADSCrossRefGoogle Scholar
  19. 19.
    Moynihan CT, Boesch LP, Laberge NL (1973) Phys Chem Glasses 14:122–125Google Scholar
  20. 20.
    Hodge LM, Ingram MD, West AR (1976) J Electroanal Chem 74:125CrossRefGoogle Scholar
  21. 21.
    Mohamed K, Moussi F, Harmon JP (2006) Polym J 47:3856–3865CrossRefGoogle Scholar
  22. 22.
    Ghallabi Z, Rekik H, Boufi S, Arous M, Kallel A (2010) J Non-Cryst Solids 356:684–687ADSCrossRefGoogle Scholar
  23. 23.
    Arous M, Ben Amor I, Boufi S, Kallel A (2007) J Appl Polym Sci 106:3631–3640CrossRefGoogle Scholar
  24. 24.
    Hammami H, Arous M, Lagche M, Kallel A (2006) Experimental study of relaxations in unidirectional piezoelectric composites. Compos Part A Appl Sci Manuf 37(1):150Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • L. Kreit
    • 1
  • Z. Samir
    • 1
  • I. Bouknaitir
    • 1
  • A. Triki
    • 2
  • M. E. Achour
    • 1
  • L. C. Costa
    • 3
  • A. Kallel
    • 2
  • A. Oueriagli
    • 4
  • M. Mabrouki
    • 5
  1. 1.LASTID Laboratory, Sciences FacultyIbn Tofail UniversityKenitraMorocco
  2. 2.LaMaCoP, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia
  3. 3.I3N and Physics DepartmentUniversity of AveiroAveiroPortugal
  4. 4.LPSCM Laboratory, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakechMorocco
  5. 5.Laboratory LGI, Faculty of Sciences and TechnicsSultan Moulay Slimane UniversityBeni MellalMorocco

Personalised recommendations