Temperature Effect on the Dielectric Response of Carbon Nanotubes Particles Filled Polyester Polymer Composites

  • Z. Samir
  • S. Boukheir
  • Y. El Merabet
  • M. P. F. Graça
  • M. E. AchourEmail author
  • L. C. Costa
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


Polyester/carbon nanotubes composites were prepared, and the frequency and temperature dependence of the electrical properties were studied at concentrations below and above the percolation threshold. The analysis of the complex permittivity using the derivative formalism allows us to overcome difficulties caused by the high electrical conductivity, which can mask the dielectric relaxation processes. The dielectric permittivity was analyzed using the Havriliak-Negami model taking into account the effect of electrode polarization. This analysis enabled us to describe quantitatively the experimental data, to calculate the ohmic conductivity and the parameter characterizing the contribution of the ohmic conduction to the complex dielectric permittivity. Above the percolation threshold, using the complex permittivity the dielectric data were analyzed at several temperatures. Both below and above the percolation threshold, the activation energy decreases with an increase in the concentration of carbon nanotube in the composite, which may be due to an increase of charge carrier density leading to a decrease of the domain boundary potential of carbon nanotube aggregates in the polyester matrix.


Carbon nanotubes Composites Electrical conductivity Havriliak-Negami model 



The authors acknowledge support from CNRST-Maroc (Centre National de la Recherche Scientifique et Technique) for their financial support, and FEDER by funds through the COMPETE 2020 Program and National Funds through FCT – Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013.


  1. 1.
    Dresselhaus MS, Avouris P (2001) Carbon nanotubes. Springer, Berlin, pp 1–9Google Scholar
  2. 2.
    De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):339–1539CrossRefGoogle Scholar
  3. 3.
    Hamada N, Sawada S-I, Oshiyama A (1992) New one-dimensional conductors graphitic microtubules. Phys Rev Lett 68:1579–1581ADSCrossRefGoogle Scholar
  4. 4.
    Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 71:1–29Google Scholar
  5. 5.
    Amarasekera J (2005) Conductive plastics for electrical and electronic applications. Reinf Plast 49:38–41CrossRefGoogle Scholar
  6. 6.
    Pande S, Chaudhary A, Patel D, Singh BP, Mathur RB (2014) Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. RSC Adv 4:13839–13849CrossRefGoogle Scholar
  7. 7.
    Park IS, Kim KJ, Nam JD, Lee JS, Yim WS (2007) Mechanical, dielectric, and magnetic properties of the silicone elastomer with multi-walled carbon nanotubes as a nanofiller. Polym Eng Sci 47(9):1396–1405CrossRefGoogle Scholar
  8. 8.
    Fischer JE (2006) Carbon nanotubes. In: Carbon nanomaterials. Taylor and Francis Group, NewYork, pp 51–58Google Scholar
  9. 9.
    Pierson HO (1993) Handbook of carbon, graphite, diamond and fullerences. Noyes Publications, Park RidgeGoogle Scholar
  10. 10.
    Meyyappan M (2004) Carbon nanotubes: science and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  11. 11.
    Boukheir S, Len A, Füzi J, Kenderesi V, Achour ME, Eber N, Costa LC, Outzourhit A, Oueriagli A (2017) Fractal structure and temperature-dependent electrical study of carbon nanotubes/epoxy polymer composites. Spect Lett 50(4):183–188CrossRefGoogle Scholar
  12. 12.
    Boukheir S, Len A, Füzi J, Kenderesi V, Achour ME, Eber N, Costa LC, Outzourhit A, Oueriagli A (2017) Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites. J Appl Polym Sci 134(8).
  13. 13.
    Kao KC (2004) Dielectric phenomena in solids. Elsevier Acad Press 525:92101–94495Google Scholar
  14. 14.
    Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor and Francis, LondonzbMATHGoogle Scholar
  15. 15.
    Abazine K, Anakiou H, El Hasnaoui M, Graca MPF, Fonseca MA, Costa LC, Achour ME, Oueriagli A (2016) Electrical conductivity of multiwalled carbon nanotubes/polyester polymer nanocomposites. J Compos Mater 50(23):3283–3290CrossRefGoogle Scholar
  16. 16.
    Samir Z, El Merabet Y, Graça MPF, Teixeira SS, Achour ME, Costa LC (2016) Impedance spectroscopy study of polyester/carbon nanotube composites. Polym Compos:1548–1569.
  17. 17.
    Macdonald JR (1987) Impedance spectroscopy. Wiley, Oxford, p 197Google Scholar
  18. 18.
    Kremer F, Hartmann L (2001) Dielectric news letterGoogle Scholar
  19. 19.
    Steeman P, Turnhout JV (1994) Fine structure in the parameters of dielectric and viscoelastic relaxations. Macromolecules 27:5421–5427ADSCrossRefGoogle Scholar
  20. 20.
    Wuubbenhorst M, Turnhout JV (2002) Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. J Non-Cryst Solids 305:40–49ADSCrossRefGoogle Scholar
  21. 21.
    Molak A, Paluch M, Pawlus S, Klimontko J, Ujma Z, Gruszka I (2005) Electric modulus approach to the analysis of electric relaxation in highly conducting. J Phys 38(9):1450–1460ADSGoogle Scholar
  22. 22.
    Samir Z, El Merabet Y, Graça MPF, Teixeira SS, Achour ME, Costa LC (2017) Dielectric behaviour of carbon nanotubes particles-filled polyester polymer composites. J Compos Mater 51(13):1831–1837CrossRefGoogle Scholar
  23. 23.
    Mingjuan H, Kongshuang Z (2008) Effect of volume fraction and temperature on dielectric relaxation spectroscopy of suspensions of PS/PANI composite microspheres. J Phys Chem C 112:19412–19422CrossRefGoogle Scholar
  24. 24.
    Signorelli R, Ku DC, Kassakian JG, Schindall JE (2009) Electrochemical double-layer capacitors using carbon nanotube electrode structures. Proc IEEE 97(11):1837–1847CrossRefGoogle Scholar
  25. 25.
    Every H, Bishop AG, Forsyth M, MacFarlane DR (2000) Ion diffusion in molten salt mixtures. Electrochim Acta 45:1279–1284CrossRefGoogle Scholar
  26. 26.
    McFarlane DR, Sun J, Golding J, Meakin P, Forsyth M (2000) High conductivity molten salts based on the imide ion. Electrochim Acta 45:1271–1278CrossRefGoogle Scholar
  27. 27.
    El-Tantawy F, Kamada H, Ohnabe H (2002) In situ network structure, electrical and thermal properties of conductive epoxy resin–carbon black composites for electrical heater applications. Mater Lett 56(1):112–126CrossRefGoogle Scholar
  28. 28.
    Trihotri M, Dwivedi UK, Khan FH, Malik MM, Qureshi MS (2015) Effect of curing on activation energy and dielectric properties of carbon black–epoxy composites at different temperatures. J Nan-Cryst Solid 421:1–13ADSCrossRefGoogle Scholar
  29. 29.
    Achour ME (2008) In: Brosseau C (ed) Prospects filled polymers engineering: mesostructure, elasticity network, and macroscopic properties. Transworld Research Network, Kerala, pp 129–174Google Scholar
  30. 30.
    El Hasnaoui M, Graca MPF, Achour ME, Costa LC (2011) Electric modulus analysis of carbon black/copolymer composite materials. Mater Sci Appl 2:1421–1426Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Z. Samir
    • 1
  • S. Boukheir
    • 1
    • 2
  • Y. El Merabet
    • 1
  • M. P. F. Graça
    • 3
  • M. E. Achour
    • 1
    Email author
  • L. C. Costa
    • 3
  1. 1.LASTID Laboratory Department of Physics, Faculty of SciencesUniversity Ibn TofailKenitraMorocco
  2. 2.Laboratoire LN2E, Faculté des SciencesUniversité Cadi AyyadMarrakechMorocco
  3. 3.I3N and Physics DepartmentUniversity of AveiroAveiroPortugal

Personalised recommendations