Nanostructured Carbon Materials: Synthesis and Applications

  • Alejandro Ansón-Casaos
  • Enrique Garcia-Bordeje
  • Ana M. Benito
  • Wolfgang K. Maser
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The family of carbon nanostructures includes a great number of forms with different properties derived from their reduced dimensionality. In particular, carbon nanotubes (CNTs) and graphene show special electronic, optical, mechanical and chemical properties that allow their potential application in new materials and devices. The real possibilities of pristine CNTs and graphene depend on their synthetic origin, which can be roughly classified into methods starting from graphite and chemical vapor deposition (CVD) processes. Applications of CNTs and graphene encompass electronics, energy devices, multifunctional composites, catalysis and sensors. Their reduced size and weight suggest potential uses in portable, wearable and mobile equipment with a high added value.


Nanotube Graphene Electronic properties Energy Composite Sensor 



The authors thank the organization of the NATO ASI taking place in Sozopol, Bulgaria from 12/09 to 20/09/2017. This work has been funded by MINECO and European Regional Development Fund (ENE 2016-79282-C5-1-R), Government of Aragon and European Social Fund (DGA-ESF-T66 “Grupo Consolidado”).


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58ADSCrossRefGoogle Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306:666–669ADSCrossRefGoogle Scholar
  3. 3.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckmisterfullerene. Nature 318:162–163ADSCrossRefGoogle Scholar
  4. 4.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605ADSCrossRefGoogle Scholar
  5. 5.
    Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vasquez J, Beyers R (1993) Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607ADSCrossRefGoogle Scholar
  6. 6.
    Bartelmess J, Giordani S (2014) Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein J Nanotechnol 5:1980–1998CrossRefGoogle Scholar
  7. 7.
    Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N (2016) Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev 116:4850–4883CrossRefGoogle Scholar
  8. 8.
    Hofmann S, Braeuninger-Weimer P, Weatherup RS (2015) CVD-enabled graphene manufacture and technology. J Phys Chem Lett 6:2714–2721CrossRefGoogle Scholar
  9. 9.
    Chih A, Ansón-Casaos A, Puértolas JA (2017) Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol Int 116:295–302CrossRefGoogle Scholar
  10. 10.
    Martín A, Hernández-Ferrer J, Vázquez L, Martínez MT, Escarpa A (2014) Controlled chemistry of tailored graphene nanoribbons for electrochemistry: a rational approach to optimizing molecule detection. RSC Adv 4:132–139CrossRefGoogle Scholar
  11. 11.
    Vallés C, Núñez JD, Benito AM, Maser WK (2012) Flexible conductive graphene paper obtained by direct and gente annealing of graphene oxide paper. Carbon 50:835–844CrossRefGoogle Scholar
  12. 12.
    Taratan A, Zobelli A, Benito AM, Maser WK, Stéphan O (2016) Revisiting graphene oxide chemistry via spatially-resolved electron energy loss spectroscopy. Chem Mater 28:3741–3748CrossRefGoogle Scholar
  13. 13.
    Nunn N, Torelli M, McGuire G, Shenderova O (2017) Nanodiamond: a high impact nanomaterial. Curr Opin Solid State Mater Sci 21:1–9ADSCrossRefGoogle Scholar
  14. 14.
    Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558CrossRefGoogle Scholar
  15. 15.
    Strano MS, Doorn SK, Haroz EH, Kittrell C, Hauge RH, Smalley RE (2003) Assignment of (n, m) Raman and optical features of metallic single-walled carbon nanotubes. Nano Lett 3:1091–1096ADSCrossRefGoogle Scholar
  16. 16.
    Weisman RB, Bachilo SM (2003) Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett 3:1235–1238ADSCrossRefGoogle Scholar
  17. 17.
    Itkis ME, Perea DE, Niyogi S, Rickard SM, Hamon MA, Hu H, Zhao B, Haddon RC (2003) Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett 3:309–314ADSCrossRefGoogle Scholar
  18. 18.
    Martinez MT, Callejas MA, Benito AM, Cochet M, Seeger T, Ansón A, Schreiber J, Gordon C, Marhic C, Chauvet O, Fierro JLG, Maser WK (2003) Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalization. Carbon 41:2247–2256CrossRefGoogle Scholar
  19. 19.
    Ansón-Casaos A, González-Domínguez JM, Lafragüeta I, Carrodeguas JA, Martínez MT (2014) Optical absorption response of chemically modified single-walled carbon nanotubes upon ultracentrifugation in various dispersants. Carbon 66:105–118CrossRefGoogle Scholar
  20. 20.
    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596ADSCrossRefGoogle Scholar
  21. 21.
    Lebedkin S, Hennrich F, Skipa T, Kappes MM (2003) Near-onfrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method. J Phys Chem B 107:1949–1956CrossRefGoogle Scholar
  22. 22.
    Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222ADSCrossRefGoogle Scholar
  23. 23.
    Colbert DT, Zhang J, McClure SM, Nikolaev P, Chen Z, Hafner JH, Owens DW, Kotula PG, Carter CB (1994) Growth and sintering of fullerene nanotubes. Science 266:1218–1222ADSCrossRefGoogle Scholar
  24. 24.
    Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756ADSCrossRefGoogle Scholar
  25. 25.
    Lange H, Saidane K, Razafinimanana M, Gleizes A (1999) Temperatures and C2 column densities in a carbon arc plasma. J Phys D Appl Phys 32:1024–1030ADSCrossRefGoogle Scholar
  26. 26.
    Maser WK, Muñoz E, Benito AM, Martínez MT, de la Fuente GF, Maniette Y, Anglaret E, Sauvajol JL (1998) Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett 292:587–593ADSCrossRefGoogle Scholar
  27. 27.
    Laplaze D, Alvarez L, Guillard T, Badie JM, Flamant G (2002) Carbon nanotubes: dynamics of synthesis processes. Carbon 40:1621–1634CrossRefGoogle Scholar
  28. 28.
    Pérez-Mendoza M, Vallés C, Maser WK, Martínez MT, Langlois S, Sauvajol JL, Benito AM (2005) Ni-Y/Mo catalyst for the large-scale CVD production of multi-wall carbon nanotubes. Carbon 43:3034–3037CrossRefGoogle Scholar
  29. 29.
    Terrado E, Muñoz E, Maser WK, Benito AM, Martínez MT (2007) Important parameters for the catalytic nanoparticles formation towards the growth of carbon nanotube aligned arrays. Diam Relat Mater 16:1082–1086ADSCrossRefGoogle Scholar
  30. 30.
    Vallés C, Pérez-Mendoza M, Martínez MT, Maser WK, Benito AM (2007) CVD production of doublé-wall carbon nanotubes. Diam Relat Mater 16:1087–1090ADSCrossRefGoogle Scholar
  31. 31.
    Vallés C, Pérez-Mendoza M, Maser WK, Martínez MT, Alvarez L, Sauvajol JL, Benito AM (2009) Effects of partial and total methane flows on the yield and structural characteristics of MWCNTs produced by CVD. Carbon 47:998–1004CrossRefGoogle Scholar
  32. 32.
    Terrado E, Tacchini I, Benito AM, Maser WK, Martínez MT (2009) Optimizing catalyst nanoparticle distribution to produce densely-packed carbon nanotube growth. Carbon 47:1989–2001CrossRefGoogle Scholar
  33. 33.
    Hernández-Ferrer J, Laporta P, Gutiérrez F, Rubianes MD, Rivas G, Martínez MT (2014) Multi-walled carbon nanotubes/graphene nanoribbons hybrid materials with superior electrochemical performance. Electrochem Commun 39:26–29CrossRefGoogle Scholar
  34. 34.
    Moreno-Guzman M, Martín A, Martín MC, Sierra T, Ansón-Casaos A, Martinez MT, Escarpa A (2016) Electrochemical behavior of hybrid carbon nanomaterials: the chemistry behind the electrochemistry. Electrochim Acta 214:286–294CrossRefGoogle Scholar
  35. 35.
    Maser W, Benito AM, Muñoz E, Martínez MT (2008) Carbon nanotubes: from fundamental nanoscale objects towards functional nanocomposites and applications. NATO ASI Ser, Ser B 101–119Google Scholar
  36. 36.
    Picó F, Rojo JM, Sanjuán ML, Ansón A, Benito AM, Callejas MA, Maser WK, Martínez MT (2004) Single-walled carbon nanotubes as electrodes in supercapacitors. J Electrochem Soc 151(6):A831–A837CrossRefGoogle Scholar
  37. 37.
    Picó F, Pecharroman C, Ansón A, Martínez MT, Rojo JM (2004) Understanding carbon-carbon composites as electrodes of supercapacitors. J Electrochem Soc 154(6):A579–A586CrossRefGoogle Scholar
  38. 38.
    Zhang L, Zhang F, Yang X, Lang G, Wu Y, Zhang T, Leng K, Huang Y, Mo Y, Yu A, Chen Y (2013) Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci Rep 3:1408ADSCrossRefGoogle Scholar
  39. 39.
    Hernández-Ferrer J, Ansón-Casaos A, Martínez MT (2012) Electrochemical synthesis and characterization of single-walled carbon nanotubes/polypyrrole films on transparent substrates. Electrochim Acta 64:1–9CrossRefGoogle Scholar
  40. 40.
    Kymakis E, Amaratunga GAJ (2003) Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix. Sol Energy Mater Sol Cells 80:465–472CrossRefGoogle Scholar
  41. 41.
    Kymakis E, Amaratunga GAJ (2002) Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett 80(1):112–114ADSCrossRefGoogle Scholar
  42. 42.
    Kamat PV (2006) Harvesting photons with carbon nanotubes. NanoToday 1(4):20–27CrossRefGoogle Scholar
  43. 43.
    Kongkanand A, Martínez-Domínguez R, Kamat PV (2007) Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett 7(3):676–680ADSCrossRefGoogle Scholar
  44. 44.
    Li H, Cao K, Cui J, Liu S, Qiao X, Shen Y, Wang M (2016) 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale 8(12):6379–6385ADSCrossRefGoogle Scholar
  45. 45.
    Kymakis E, Strylianakis MM, Spyropoulos GD, Stratakis E, Koudoumas E, Fotakis C (2012) Sol Energy Mater Sol Cells 96:298–301CrossRefGoogle Scholar
  46. 46.
    Stratakis E, Savva K, Konios D, Petridis C, Kymakis E (2014) Improving the efficiency of organic photovoltaics by tuning the work function of graphene oxide hole transporting layers. Nanoscale 6:6925–6931ADSCrossRefGoogle Scholar
  47. 47.
    Ansón-Casaos A, Mis-Fernández R, López-Alled CM, Almendro-López E, Hernández-Ferrer J, González-Domínguez JM, Martínez MT (2015) Transparent conducting films made of different carbon nanotubes, processed carbon nanotubes, and graphene nanoribbons. Chem Eng Sci 138:566–574CrossRefGoogle Scholar
  48. 48.
    Jeon I, Chiba T, Delacou C, Guo Y, Kaskela A, Reynand O, Kauppinen EI, Maruyama S, Matsuo Y (2015) Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett 15:6665–6671ADSCrossRefGoogle Scholar
  49. 49.
    Bedeloglu A, Jimenez P, Demir A, Bozkurt Y, Maser WK, Sariciftci NS (2011) Photovoltaic textile structure using polyaniline/carbon nanotube composite materials. J Tex I 102(10):857–862Google Scholar
  50. 50.
    Ansón A, Benham M, Jagiello J, Callejas MA, Benito AM, Maser WK, Züttel A, Sudan P, Martínez MT (2004) Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques. Nanotechnology 15:1503–1508ADSCrossRefGoogle Scholar
  51. 51.
    Ansón A, Jagiello J, Parra JB, Sanjuán ML, Benito AM, Maser WK, Martínez MT (2004) Porosity, surface área, surface energy, and hydrogen adsorption in nanostructured carbons. J Phys Chem B 108:15820–15826CrossRefGoogle Scholar
  52. 52.
    Ansón A, Lafuente E, Urriolabeitia E, Navarro R, Benito AM, Maser WK, Martínez MT (2006) Hydrogen capacity of palladium-loaded carbon materials. J Phys Chem B 110:6643–6648CrossRefGoogle Scholar
  53. 53.
    Ansón A, Lafuente E, Urriolabeitia E, Navarro R, Benito AM, Maser WK, Martínez MT (2007) Preparation of palladium loaded carbon nanotubes and activated carbons for hydrogen sorption. J Alloys Compounds 436:294–297CrossRefGoogle Scholar
  54. 54.
    Kunowsky M, Marco-Lozar JP, Suárez-García F, Linares-Solano A (2015) Applications for CO2-activated carbon monoliths: I. gas storage. Int J Appl Ceram Technol 12(S3):E121–E126CrossRefGoogle Scholar
  55. 55.
    Lafuente E, Muñoz E, Benito AM, Maser WK, Martínez MT (2006) Single-walled carbon nanotube-supported platinum nanoparticles as fuel cell electrocatalysts. J Mater Res 21(11):2841–2846ADSCrossRefGoogle Scholar
  56. 56.
    Solla-Gullón J, Lafuente E, Aldaz A, Martínez MT, Feliu JM (2007) Electrochemical characterization and reactivity of Pt nanoparticles supported on single-walled carbon nanotubes. Electrochim Acta 52:5582–5590CrossRefGoogle Scholar
  57. 57.
    Sieben JM, Ansón-Casaos A, Martínez MT, Morallón E (2013) Single-walled carbon nanotube buckypapers as electrocatalyst supports for metanol oxidation. J Power Sources 242:7–14CrossRefGoogle Scholar
  58. 58.
    Cano M, Benito A, Maser WK, Urriolabeitia E (2001) One-step microwave synthesis of palladium-carbon nanotube hybrids with improved catalytic performance. Carbon 49:652–658CrossRefGoogle Scholar
  59. 59.
    Cano M, Benito A, Maser WK, Urriolabeitia E (2013) High catalytic performance of palladium nanoparticles supported on multiwalled carbon nanotubes in alkene hydrogenation reactions. New J Chem 37:1968–1972CrossRefGoogle Scholar
  60. 60.
    Cano M, Villuendas P, Benito AM, Urriolabeitia EP, Maser WK (2015) Carbon nanotube-gold nanoparticles as efficient catalyst for the selective hydrogenation of nitroaromatic derivatives to anilines. Mater Today Commun 3:104–113CrossRefGoogle Scholar
  61. 61.
    Cano M, Benito AM, Urriolabeitia EP, Arenal R, Maser WK (2013) Reduced graphene oxide: firm support for catalytically active palladium nanoparticles and game changer in selective hydrogenation reactions. Nanoscale 5:10189–10193ADSCrossRefGoogle Scholar
  62. 62.
    Roldan L, Armenise S, Marco Y, Garcia-Bordeje E (2012) Control of nitrogen insertion during the growth of nitrogen-containing carbon nanofibers on cordierite monolith walls. Phys Chem Chem Phys 14:3568–3575CrossRefGoogle Scholar
  63. 63.
    García-Bordejé E, Kvande I, Chen D, Rönning M (2006) Carbon nanofibers uniformly grown on γ-alumina washcoated cordierite monoliths. Adv Mater 18:1589–1592CrossRefGoogle Scholar
  64. 64.
    Roldan L, Benito AM, Garcia-Bordeje E (2015) Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. J Mater Chem A 3:24379–24388CrossRefGoogle Scholar
  65. 65.
    Roldán L, Marco Y, García-Bordejé E (2017) Origin of the excellent performance of Ru on nitrogen-doped carbon nanofibers for CO2 hydrogenation to CH4. ChemSusChem 10:1139–1144CrossRefGoogle Scholar
  66. 66.
    Roldán L, Marco Y, García-Bordejé E (2015) Function of the support and metal loading on catalytic carbon dioxide reduction using ruthenium nanoparticles supported on carbon nanofibers. ChemCatChem 7:1347–1356CrossRefGoogle Scholar
  67. 67.
    Marco Y, Roldán L, Muñoz E, García-Bordejé E (2014) Carbon nanofibers modified with heteroatoms as metal-free catalysts for the oxidative dehydrogenation of propane. ChemSusChem 7:2496–2504CrossRefGoogle Scholar
  68. 68.
    Armenise S, Roldán L, Marco Y, Monzón A, García-Bordejé E (2012) Elucidation of catalyst support effect for NH3 decomposition using Ru nanoparticles on nitrogen-functionalized carbon nanofiber monoliths. J Phys Chem C 116:26385–26395CrossRefGoogle Scholar
  69. 69.
    Restivo J, Orfão JJM, Pereira MFR, Garcia-Bordejé E, Roche P, Bourdin D, Houssais B, Coste M, Derrouiche S (2013) Catalytic ozonation of organic micropollutants using carbon nanofibers supported on monoliths. Chem Eng J 230:115–123CrossRefGoogle Scholar
  70. 70.
    Yuranova T, Kiwi-Minsker L, Franch C, Palomares AE, Armenise S, Garcia-Bordeje E (2013) Nanostructured catalysts for the continuous reduction of nitrates and bromates in water. Ind Eng Chem Res 52:13930–13937CrossRefGoogle Scholar
  71. 71.
    Maser WK, Benito AM, Castell P, Sainz R, Martinez MT, Naffakh M, Marco C, Ellis G, Gómez MA (2009) Carbon nanotube composite materials: opportunities and processing issues. NATO ASI Ser, Ser B 181–198Google Scholar
  72. 72.
    Vallés C, Jiménez P, Muñoz E, Benito AM, Maser WK (2011) Graphene: 2D-building block for functional nanocomposites. NATO ASI Ser, Ser B 143–148Google Scholar
  73. 73.
    Diez-Pascual AM, Gonzalez-Dominguez JM, Martinez-Rubi Y, Naffakh M, Ansón A, Martínez MT, Simard B, Gómez MA. Synthesis and properties of PEEK/carbon nanotube nanocomposites. In: Polymer nanotube nanocomposites: synthesis, properties, and applications. Scrivener Publishing LLC, pp 281–313Google Scholar
  74. 74.
    Gonzalez-Dominguez JM, Diez-Pascual AM, Ansón-Casaos A, Gómez-Fatou MA, Martinez MT. Functionalization strategies for single-walled carbon nanotubes integration in epoxy matrices. In: Polymer nanotube nanocomposites: synthesis, properties, and applications: second edition. Scrivener Publishing LLC, pp 281–313Google Scholar
  75. 75.
    Ansón-Casaos A, Pascual FJ, Ruano C, Fernández-Huerta N, Fernández-Pato I, Otero JC, Puértolas JA, Martínez MT (2015) Electrical conductivity and tensile properties of block-copolymer wrapped single-walled carbon nanotube/poly(methyl methacrylate) composites. J Appl Polym Sci 132(9):41547Google Scholar
  76. 76.
    Castell P, Medel FJ, Martinez MT, Puértolas JA (2009) Influence of gamma irradiation on carbon nanotube-reinforced polypropylene. J Nanosci Nanotechnol 9:6055–6063CrossRefGoogle Scholar
  77. 77.
    Martínez-Morlanes MJ, Castell P, Martínez-Nogués V, Martinez MT, Alonso PJ, Puértolas JA (2011) Effects of gamma-irradiation on UHMWPE/MWNT nanocomposites. Compos Sci Technol 71:282–288CrossRefGoogle Scholar
  78. 78.
    Martínez-Morlanes MJ, Castell P, Alonso PJ, Martinez MT, Puértolas JA (2012) Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites. Carbon 50:2442–2452CrossRefGoogle Scholar
  79. 79.
    Castell P, Martínez-Morlanes MJ, Alonso PJ, Martinez MT, Puértolas JA (2013) A novel approach to the chemical stabilization of gamma-irradiated ultrahigh molecular weight polyethylene using arc-discharge multi-walled carbon nanotubes. J Mater Sci 48:6549–6557ADSCrossRefGoogle Scholar
  80. 80.
    Sayago I, Terrado E, Lafuente E, Horrillo MC, Maser WK, Benito AM, Navarro R, Urriolabeitia EP, Martinez MT, Gutierrez J (2005) Hydrogen sensors based on carbon nanotubes thin films. Synth Met 148:15–19CrossRefGoogle Scholar
  81. 81.
    Sayago I, Terrado E, Aleixandre M, Horrillo MC, Fernández MJ, Lozano J, Lafuente E, Maser WK, Benito AM, Martinez MT, Gutiérrez J, Muñoz E (2007) Novel selective sensors based on carbon nanotube films for hydrogen detection. Sensors Actuators B 122:75–80CrossRefGoogle Scholar
  82. 82.
    Sayago I, Santos H, Horrillo MC, Aleixandre M, Fernández MJ, Terrado E, Tacchini I, Aroz R, Maser WK, Benito AM, Martinez MT, Gutiérrez J, Muñoz E (2008) Carbon nanotube networks as gas sensors for NO2 detection. Talanta 77:758–764CrossRefGoogle Scholar
  83. 83.
    Schnorr JM, van der Zwaag D, Walish JJ, Weizmann Y, Swager TM (2013) Sensory arrays of covalently functionalized single-walled carbon nanotubes for explosive detection. Adv Funct Mater 23:5285–5291CrossRefGoogle Scholar
  84. 84.
    Kumar D, Jha P, Chouksey A, Rawat JSBS, Tandon RP, Chaudhury PK (2016) 4-(hexafluoro-2-hydroxy isopropyl)aniline functionalized highly sensitive flexible SWCNT sensor for detection of nerve agent simulant dimethyl methylphosphonate. Mater Chem Phys 181:487–494CrossRefGoogle Scholar
  85. 85.
    Sayago I, Matatagui D, Fernández MJ, Fontecha JL, Jurewicz I, Garriga R, Muñoz E (2016) Graphene oxide as sensitive layer in Love-wave Surface acoustic wave sensors for the detection of chemical warfare agent simulants. Talanta 148:393–400CrossRefGoogle Scholar
  86. 86.
    Martinez MT, Tseng Y, Ormategui N, Loinaz I, Eritja R, Bokor J (2009) Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett 9(2):530–536ADSCrossRefGoogle Scholar
  87. 87.
    Martinez MT, Tseng Y, Salvador JP, Marco MP, Ormategui N, Loinaz I, Bokor J (2010) Electronic anabolic steroid recognition with carbon nanotube field effect transistors. ACS Nano 4(3):1473–1480CrossRefGoogle Scholar
  88. 88.
    Martinez MT, Tseng Y, González M, Bokor J (2012) Streptavidin as CNTs and DNA linker for the specific electronic and optical detection of DNA hybridization. J Phys Chem C 116:22579–22586CrossRefGoogle Scholar
  89. 89.
    Eguílaz M, Gutiérrez A, Gutierrez F, González-Domínguez JM, Ansón-Casaos A, Hernández-Ferrer J, Ferreyra NF, Martinez MT, Rivas G (2016) Covalent functionalization of single-walled carbon nanotubes with polytyrosine: characterization and analytical applications for the sensitive quantification of polyphenols. Anal Chim Acta 909:51–59CrossRefGoogle Scholar
  90. 90.
    Eguílaz M, Gutierrez F, González-Domínguez JM, Martínez MT, Rivas G (2016) Single-walled carbon nanotubes covalently functionalized with polytyrosine: a new material for the development of NADH-based biosensors. Biosens Bioelectron 86:308–314CrossRefGoogle Scholar
  91. 91.
    Guitierrez FA, Gonzalez-Dominguez JM, Ansón-Casaos A, Hernández-Ferrer J, Rubianes MD, Martinez MT, Rivas G (2017) Single-walled carbon nanotubes covalently functionalized with cysteine: a new alternative for the highly sensitive and selective Cd(II) quantification. Sensors Actuators B 249:506–514CrossRefGoogle Scholar
  92. 92.
    Hernández R, Riu J, Bobacka J, Vallés C, Jiménez P, Benito AM, Maser WK, Rius FX (2012) Reduced graphene oxide films as solid transducers in potentiometric all-solid-state ion-selective electrodes. J Phys Chem C 116:22570–22578CrossRefGoogle Scholar
  93. 93.
    Hernández R, Vallés C, Benito AM, Maser WK, Rius FX, Riu J (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron 54:553–557CrossRefGoogle Scholar
  94. 94.
    Ferreira A, Rocha JG, Ansón-Casaos A, Martinez MT, Vaz F, Lanceros-Mendez S (2012) Electrochemical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications. Sens Actuat A 178:10–16CrossRefGoogle Scholar
  95. 95.
    Gonzalez-Dominguez JM, Ansón-Casaos A, Martinez MT, Ferreira A, Vaz F, Lanceros-Méndez S (2012) Piezoresistive response of Pluronic-wrapped single-wall carbon nanotube-epoxy composites. J Intell Mater Syst Struct 23(8):909–917CrossRefGoogle Scholar
  96. 96.
    Ferreira A, Martinez MT, Ansón-Casaos A, Gómez-Pineda LE, Vaz F, Lanceros-Mendez S (2013) Relationship between electrochemical response and percolation threshold in carbon nanotube/poly(vinylidene) composites. Carbon 61:568–576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Alejandro Ansón-Casaos
    • 1
  • Enrique Garcia-Bordeje
    • 1
  • Ana M. Benito
    • 1
  • Wolfgang K. Maser
    • 1
  1. 1.Instituto de Carboquímica, ICB-CSICZaragozaSpain

Personalised recommendations