Advertisement

Iron Concentration Effect on the Microwave Dielectric Properties of BiNbO4 Ceramics

  • S. Devesa
  • M. P. Graça
  • L. C. Costa
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Ceramic dielectrics based on bismuth are recognized as materials with low sintering temperature and have been studied for different applications in the microelectronic area. Since 1992, when Kagata reported the microwave dielectric properties of bismuth niobate (BiNbO4), various attempts have been undertaken to improve the microwave dielectric properties of this ceramic material. Besides the addition of different oxides, such as CuO, ZnO, V2O5, PbO, Bi2O3 and Fe2O3, several researchers tried to improve bismuth niobate properties by adding lanthanides. In this work, (Bi1-xFex)NbO4 (0.00≤ × ≤1.00) samples were prepared using the sol-gel method. The fine particles were pressed into cylinders and heat-treated at specific temperatures. Single phase samples of BiNbO4 (x = 0.00) and FeNbO4 (x = 1.00) were then used as precursors for (Bi1-xFex)NbO4, prepared by the solid state reaction method. The microwave dielectric characterization of the samples was performed using the small perturbation method, and related to their structure. With the sol-gel method the substitution of bismuth by iron was successful, since two non-stoichiometric phases, Bi1.34Fe0.66Nb1.34O6.35 and Bi1.721Fe1.056Nb1.134O7, were obtained. Moreover, the inclusion of iron inhibited the formation of low and high temperature triclinic bismuth niobate. With the solid state technique, the substitution of bismuth by iron was not achieved; it was observed that the dielectric constant decreases with the increase of the FeNbO4 phase and that the dielectric losses follow the opposite trend.

Keywords

Bismuth niobate Sol-gel Solid state Microwaves Dielectric properties 

References

  1. 1.
    Tzou W, Yang C, Chen W, Chen P (2000) Improvements in the sintering and microwave properties of BiNbO4 microwave ceramics by V2O5 addition. J Eur Ceram Soc 20:991–996Google Scholar
  2. 2.
    Sebastian MT, Jantunen H (2008) Low loss dielectric materials for LTCC applications: a review. Int Mater Rev 53:57–90Google Scholar
  3. 3.
    Narang S, Bahel S (2010) Low loss dielectric ceramics for microwave applications: a review. J Ceram Process Res 11(3):316–321Google Scholar
  4. 4.
    Sebastian MT (2008) Dielectric materials for wireless communication. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Devesa S, Graça MP, Henry F, Costa L (2015) Microwave dielectric properties of (Bi1-xFex) NbO4 ceramics prepared by the sol–gel method. Ceram Int 41(6):8186–8190Google Scholar
  6. 6.
    Zhou D, Pang L, Wang H, Yao X (2009) Phase composition and phase transformation in Bi (Sb, Nb, Ta)O4 system. Solid State Sci 11:1894–1897Google Scholar
  7. 7.
    Wang N, Zhao M, Yin Z, Li W (2003) Low-temperature synthesis of β-BiNbO4 powder by citrate sol–gel method. Mater Lett 57:4009–4013Google Scholar
  8. 8.
    Devesa S, Graça MP, Costa L (2016) Structural, morphological and dielectric properties of BiNbO4 ceramics prepared by the sol-gel method. Mater Res Bull 78:128–133Google Scholar
  9. 9.
    Kagata H, Inoue T, Kato J, Kameyama I (1992) Low-fire bismuth-based dielectric ceramics for microwave use. Jpn J Appl Phys 31(9S):3152Google Scholar
  10. 10.
    Almeida J, Fernandes T, Sales A, Silva M, Júnior G, Rodrigues H, Sombra A (2011) Study of the structural and dielectric properties of Bi2O3 and PbO addition on BiNbO4 ceramic matrix for RF applications. J Mater Sci Mater Electron 22:978–987Google Scholar
  11. 11.
    Yang Y, Ding S, Yao X (2004) Influences of Fe2O3 additives on the dielectric properties of BiNbO4 ceramics under different sintering atmosphere. Ceram Int 30:1341–1345CrossRefGoogle Scholar
  12. 12.
    Shihua D, Xi Y, Yu M, Puling L (2006) Microwave dielectric properties of (Bi1-xFex)NbO4 ceramics (R= Ce, Nd, Dy, Er). J Eur Ceram Soc 26:2003–2005CrossRefGoogle Scholar
  13. 13.
    Wang N, Zhao M, Yin Z, Li W (2004) Effects of complex substitution of La and Nd for Bi on the microwave dielectric properties of BiNbO4 ceramics. Mater Res Bull 39:439–448CrossRefGoogle Scholar
  14. 14.
    Tzou W, Yang C, Chen Y, Cheng P (2002) Microwave dielectric characteristics of (Bi1-xSmx) NbO4 ceramics. Ceram Int 28:105–110CrossRefGoogle Scholar
  15. 15.
    Wang N, Zhao M, Yin Z (2003) Effects of Ta2O5 on microwave dielectric properties of BiNbO4 ceramics. Mater Sci Eng B 99(1):238–242CrossRefGoogle Scholar
  16. 16.
    Butee S, Kulkarni A, Prakash O, Aiyar R, Sudheendran K, Raju K (2010) Effect of lanthanide ion substitution on RF and microwave dielectric properties of BiNbO4 ceramics. J Alloys Compd 492:351–357CrossRefGoogle Scholar
  17. 17.
    Devesa S, Graça MP, Henry F, Costa LC (2017) Structural, morphological and microwave dielectric properties of (Bi1-xEux)NbO4 ceramics prepared by the sol-gel method. Int J Mater Eng Innov 8(1):12–26CrossRefGoogle Scholar
  18. 18.
    Parkash A, Vaid JK, Mansingh A (1979) Measurement of dielectric parameters at microwave frequencies by cavity-perturbation technique. IEEE Trans Microw Theory Tech 27(9):791–795CrossRefADSGoogle Scholar
  19. 19.
    Kim E, Choi W, Eur J (2006) Effect of phase transition on the microwave dielectric properties of BiNbO4. Ceram Soc 26:1761–1766CrossRefGoogle Scholar
  20. 20.
    Liou Y, Tsai W, Chen H (2009) Low-temperature synthesis of BiNbO4 ceramics using reaction-sintering process. Ceram Int 35:2119–2122CrossRefGoogle Scholar
  21. 21.
    Zhou D, Wang H, Yao X, Wei X, Xiang F, Pang L (2007) Phase transformation in BiNbO4 ceramics. Appl Phys Lett 90(17):2910CrossRefADSGoogle Scholar
  22. 22.
    Maruyama Y, Izawa C, Watanabe T (2012) Synthesis of by the Flux method. ISRN Mater SciGoogle Scholar
  23. 23.
    Sales AJ, Oliveira P, Almeida J, Costa M, Rodrigues H, Sombra A (2012) Copper concentration effect in the dielectric properties of BiNbO4 for RF applications. J Alloys Compd 542:264–270CrossRefGoogle Scholar
  24. 24.
    Filho RC, Araújo JH, Ginani MF, d’Assunção AG, Martins RA (2010) Simulation and measurement of inset-fed microstrip patch antennas on BiNbO4 substrates. Microw Opt Technol Lett 52(5):1034–1036CrossRefGoogle Scholar
  25. 25.
    Radha R, Gupta UN, Samuel V, Muthurajan H, Kumar HH, Ravi V (2008) A co-precipitation technique to prepare BiNbO4 powders. Ceram Int 34(6):1565–1567CrossRefGoogle Scholar
  26. 26.
    Almeida CG, Andrade HMC, Mascarenhas AJS, Silva LA (2010) Synthesis of nanosized β-BiTaO4 by the polymeric precursor method. Mater Lett 64(9):1088–1090CrossRefGoogle Scholar
  27. 27.
    S. Devesa, Graça MP, Costa LC (2017) Recent applications in sol-gel synthesis. InTechGoogle Scholar
  28. 28.
    Costa LC, Aoujgal A, Graça MPF, Hadik N, Achour ME (2010) Microwave dielectric properties of the system Ba1-xSrxTiO3. Physica B 405(17):3741–3744CrossRefADSGoogle Scholar
  29. 29.
    Rubinger CPL, Costa LC (2007) Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials. Microw Opt Technol Lett 49:1687–1690CrossRefGoogle Scholar
  30. 30.
    Costa LC, Devesa S, Henry F (2005) Microwave dielectric properties of polybutylene terephtalate (PBT) with carbon black particles. Microw Opt Technol Lett 46:61–63CrossRefGoogle Scholar
  31. 31.
    Silva CC, Gouveia DX, Graça MPF, Costa LC, Sombra ASB, Valente MA (2010) Study of the structural and dielectric properties of xLiFe5O8-(100− x) LiNbO3 composites, processed using microwave energy. J Non-Cryst Solids 356:602–606CrossRefADSGoogle Scholar
  32. 32.
    Devesa S, Graça MP, Henry F, Costa LC (2016) Dielectric properties of FeNbO4 ceramics prepared by the sol-gel method. Solid State Sci 61:44–50CrossRefADSGoogle Scholar
  33. 33.
    Lee CY, Macquart R, Zhou Q, Kennedy BJ (2003) Structural and spectroscopic studies of BiTa1-xNbxO. J Solid State Chem 174(2):310–318CrossRefADSGoogle Scholar
  34. 34.
    Muktha B, Darriet J, Madras G, Row T (2006) Crystal structures and photocatalysis of the triclinic polymorphs of BiNbO4 and BiTaO4. J Solid State Chem 179:3919–3925CrossRefADSGoogle Scholar
  35. 35.
    Schmidbauer E, Schneider J (1997) Electrical resistivity, thermopower, and 57Fe Mössbauer study of FeNb4. J Solid State Chem 134(2):253–264CrossRefADSGoogle Scholar
  36. 36.
    Radha R, Muthurajan H, Rao NK, Pradhan S, Gupta UN, Jha RK, Mirji SA, Ravi V (2008) Low temperature synthesis and characterization of BiNbO4 powders. Mater Charact 59(8):1083–1087CrossRefGoogle Scholar
  37. 37.
    Xu C, He D, Liu C, Wang H, Zhang L, Wang P, Yin S (2013) High pressure and high temperature study the phase transitions of BiNbO4. Solid State Commun 156:21–24CrossRefADSGoogle Scholar
  38. 38.
    Roth RS, Waring JL (1964) Ixiolite+ other polymorphic types of FeNbO4. Am Mineral 49:2242Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • S. Devesa
    • 1
  • M. P. Graça
    • 1
  • L. C. Costa
    • 1
  1. 1.I3N and Physics DepartmentUniversity of AveiroAveiroPortugal

Personalised recommendations