Advertisement

The Measurement of Thermally Stimulated Depolarization and Polarization Currents

  • M. P. F. Graça
  • P. R. Prezas
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The measurement of thermally stimulated depolarization currents, a technique usually known by its initials (TSDC), has contributed substantially to the knowledge and understanding of charge storage and charge decay processes in several types of electret materials, i.e., materials that can have electrical polarization arising from kinetically trapped charges. The polarization of these materials may increase the magnitude of the applied electric field, until the point of dielectric breakdown. A similar, and sometimes complementary, technique consists in the measurement of thermally stimulated polarization currents (TSPC). This contribution discusses experimental and theoretical considerations regarding both techniques. Additionally, it also includes a case study regarding LiNbO3 glass-ceramics, synthesized by the melt-quenching process.

Keywords

TSDC TSPC LiNbO3 Glasses Glass-ceramics 

References

  1. 1.
    Bucci C, Fieschi R (1964) Ionic thermoconductivity. Method for the investigation of polarization in insulators. Phys Rev Lett 12(1):16–19CrossRefADSGoogle Scholar
  2. 2.
    Chen R, Kirsh Y (1981) The analysis of thermally stimulated processes. Pergamon Press, New YorkGoogle Scholar
  3. 3.
    Carr SH (1982) Thermally stimulated discharge current analysis of polymers. In: Seanor DA (ed) Electrical properties of polymers. Academic, New YorkGoogle Scholar
  4. 4.
    Araujo EB, Abreu JAM, Oliveira RS, Paiva JAC, Sombra ASB (1997) Structure and electrical properties of lithium niobophosphate glasses. Can J Phys 75:747–758CrossRefADSGoogle Scholar
  5. 5.
    Turnhout JV (1987) Thermally stimulated discharge of electrets. In: Sessler G (ed) Electrets. Springer, BerlinGoogle Scholar
  6. 6.
    Hong C, Day DE (1979) Thermally stimulated polarization and depolarization current (TSPC/TSDC) techniques for studying ion motion in glass. J Mater 14:2493–2499CrossRefADSGoogle Scholar
  7. 7.
    Milankovic AM, Day DE (1993) Thermally stimulated polarization and dc conduction in iron phosphate glasses. J Non-Cryst Solids 162(3):275–286CrossRefADSGoogle Scholar
  8. 8.
    Hong C, Day DE (1981) Thermally stimulated currents in sodium silicate glasses. J Am Ceram Soc 64(2):61–68CrossRefGoogle Scholar
  9. 9.
    Prezas PR, Melo BMG, Costa LC, Valente MA, Lança MC, Ventura JMG, Pinto LFV, Graça MPF (2017) TSDC and impedance spectroscopy measurements on hydroxyapatite, β-tricalcium phosphate and hydroxyapatite/β-tricalcium phosphate biphasic bioceramics. Appl Surf Sci 424(1):28–38CrossRefADSGoogle Scholar
  10. 10.
    Xu Y (1991) Ferroelectric materials and their applications. North-HollandGoogle Scholar
  11. 11.
    Fillard JP, Van Turnhout J (1977) Thermally stimulated processes in solids: new prospects. J Electrost 3:1–302CrossRefGoogle Scholar
  12. 12.
    Horiuchi N, Nakamura M, Nagai A, Katayama K, Yamashita K (2012) Proton conduction related electrical dipole and space charge polarization in hydroxyapatite. J Appl Phys 112(7):074901CrossRefADSGoogle Scholar
  13. 13.
    Garlick GFJ, Gibson AF (1948) The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc Phys Soc 60(6):574–590CrossRefADSGoogle Scholar
  14. 14.
    McKeever SWS, Hughes DM (1975) Thermally stimulated currents in dielectrics. J Phys D Appl Phys 8:1520–1529CrossRefADSGoogle Scholar
  15. 15.
    Kristianpoller N, Kirsh Y (1979) Thermally stimulated depolarization currents in barium floride. J Phys C Solid State Phys 12(6):1073–1079CrossRefADSGoogle Scholar
  16. 16.
    Paul A (1982) Chemistry of glasses. Chapman & Hall, LondonCrossRefGoogle Scholar
  17. 17.
    James PF (1995) Glass-ceramics – new compositions and uses. J Non-Cryst Solids 181:1–15CrossRefADSGoogle Scholar
  18. 18.
    Keding R, Rüssel C (1997) Electrochemical nucleation for the preparation of oriented glass ceramics. J Non-Cryst Solids 219:136–141CrossRefADSGoogle Scholar
  19. 19.
    Shankar MV, Varma KBR (1999) Dielectric and optical properties of surface crystallized TeO2-LiNbO3 glasses. J Non-Cryst Solids 243:192–203CrossRefADSGoogle Scholar
  20. 20.
    Jain H (2004) Transparent ferroelectric glass-ceramics. Ferroelectrics 306:111–127CrossRefGoogle Scholar
  21. 21.
    Halliyal A, Bhalla AS, Newnham RE (1983) Polar glass-ceramics – a new family of electroceramic materials -tailoring the piezoelectric and pyroelectric properties. Mater Res Bull 18:1007–1019CrossRefGoogle Scholar
  22. 22.
    Dan A, Chakravorty D (2000) Dielectric properties of silver in a glass-ceramic containing the lithium niobate phase. J Mater Res 15(6):1324–1330CrossRefADSGoogle Scholar
  23. 23.
    Prassas M. Silica glass from aerogels. http://www.solgel.com/articles/april01/aerog2.htm
  24. 24.
    Ding Y, Miura Y, Nakaoka S, Nanba T (1999) Oriented surface crystallization of lithium niobate on glass and second harmonic generation. J Non-Cryst Solids 259:132–138CrossRefADSGoogle Scholar
  25. 25.
    Aboulleil MM, Leonberger FJ (1988) Model for ion-exchanged wave-guides in glass. J Am Ceram Soc 71:497–502CrossRefGoogle Scholar
  26. 26.
    Vogel EM (1989) Glasses as nonlinear photonic materials. J Am Ceram Soc 72:719–724CrossRefGoogle Scholar
  27. 27.
    Weiss GH, Bendler JT, Dishon M (1985) Analysis of dielectric loss data using the williams-watts function. J Chem Phys 83–3:1424–1427CrossRefADSGoogle Scholar
  28. 28.
    Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82(4):797–818CrossRefGoogle Scholar
  29. 29.
    Prasad E, Sayer M, Vyas HM (1980) Li+ conductivity in lithium-niobate silica glasses. J Non-Cryst Solids 40:119–134CrossRefADSGoogle Scholar
  30. 30.
    Todorovic M, Radonjic L (1997) Lithium-niobate ferroelectric material obtained by glass crystallization. Ceram Int 23:55–60CrossRefGoogle Scholar
  31. 31.
    Agarwal AK, Day DE (1982) Thermally stimulated currents and alkali-ion motion in silicate glasses. J Am Ceram Soc 65(2):111–117CrossRefGoogle Scholar
  32. 32.
    Hong C, Day DE (1981) Thermally stimulated currents in sodium-silicate glasses. J Am Ceram Soc 64(2):61–67CrossRefGoogle Scholar
  33. 33.
    Agarwal AK, Day DE (1981) Polarization and conduction mechanism in mixed-alkali glasses. J Am Ceram Soc 65(5):231–237CrossRefGoogle Scholar
  34. 34.
    Graca MPF, Ferreira da Silva MG, Valente MA (2007) Structural and electrical properties of SiO2-Li2O-Nb2O5 glass and glass-ceramics obtained by thermoelectric treatments. J Mater Sci 42:2543–2550CrossRefADSGoogle Scholar
  35. 35.
    Graca MPF, Ferreira da Silva MG, Sombra ASB, Valente MA (2006) Study of the electric and dielectric properties of SiO2-Li2O-Nb2O5 solgel glass-ceramics. J Non-Cryst Solids 352:5199–5204CrossRefADSGoogle Scholar
  36. 36.
    Doi A (1998) Comparison of frequency-domain and temperature-domain electrical responses of ion-conducting glass. Solid State Ionics 107:81–88CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.I3N and Physics DepartmentUniversity of AveiroAveiroPortugal

Personalised recommendations