Advertisement

1-Azido-2-Nitro-2-Azapropane (ANAP)

  • Dabir S. ViswanathEmail author
  • Tushar K. Ghosh
  • Veera M. Boddu
Chapter
  • 775 Downloads

Abstract

Thermodynamic and explosive properties of 1-azido-2-nitro-2-azapropane (ANAP) have been determined in a combined computational ab initio and EXPLO5 (Becker—Kistiakowsky—Wilson equation of state, BKW EOS) study. The enthalpy of formation of ANAP in the liquid phase, heat of detonation, detonation pressure and detonation velocity of ANAP were calculated. ANAP compounds were characterized using vibrational (IR and Raman) and multinuclear NMR spectroscopy, elemental analysis and low-temperature single crystal X-ray diffraction. ANAP represents a covalently bound liquid energetic material which contains both a nitramine unit and an azide group in the molecule.

Keywords

Nitramine Detonation Pressure Detonation Velocity Azide Group Explosive Properties 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Klapotke TM, Steemann FX, Suceska M (2008) Computed thermodynamic and explosive properties of 1-Azido-2-nitro-2-azapropane (ANAP). Propellants, Explos, Pyrotech 33(3):213–218CrossRefGoogle Scholar
  2. 2.
    Rosher R (1975) Double-base propellant containing organic azide. The United States of America as represented by the Secretary of the Navy (Washington DC) US 3883374Google Scholar
  3. 3.
    Boese R, Klapotke TM, Meyer P, Verma V (2006) Synthesis and characterization of 1-Azido-2-Nitro-2-Azapropane and 1-Nitrotetrazolato-2-Nitro-2-Azapropane. Propellants, Explos, Pyrotech 31(4):263–268CrossRefGoogle Scholar
  4. 4.
    Klapotke TM, Mayer P, Schulz A, Weigand1 JJ (2005) 5-Diamino-4-methyltetrazolium dinitramide. 2032 9 J. Am Chem Soc 127:2032–2033Google Scholar

Additional Scholarly Articles for Further Reading

  1. 5.
    Dorofeeva OV, Ryzhova ON, Suntsova MA (2013) Accurate prediction of enthalpies of formation of organic azides by combining g4 theory calculations with an isodesmic reaction scheme. J Phys Chem A 117(31):6835–6845. doi: 10.1021/jp404484q
  2. 6.
    Heeb G, et al. (2007) New energetic materials for nitrocellulose based propellants. Int Annu Conf ICT 38th:101/1-101/13Google Scholar
  3. 7.
    Pjatakov NF, Shlyapochnikov VA, Cherskaya NO, Vjyunova IB (1995) Intermolecular interactions of nitramines. Proc Int Pyrotech Semin 21st:698–712Google Scholar
  4. 8.
    Rosher R (1975) Organic azides. US3873579AGoogle Scholar
  5. 9.
    Stepanov RS, Kruglyakova LA (1999) Thermal decomposition of polyfunctional azido compounds. Int Annu Conf ICT 30th:47/1-47/8Google Scholar
  6. 10.
    Stepanov RS, Kruglyakova LA, Astachov AM (2007) Thermal decomposition of high energy compound azidonitramines. Cent Eur J Energ Mater 4(1–2):151–156Google Scholar
  7. 11.
    Unterhalt B, Leiblein F (1979) Nitramines, XII: N-Fluoromethyl- and N-azidomethyl-N-alkylnitramines. Arch Pharm (Weinheim, Ger) 312(2):159–64Google Scholar

Copyright information

© US Government (outside the USA) 2018

Authors and Affiliations

  • Dabir S. Viswanath
    • 1
    • 2
    Email author
  • Tushar K. Ghosh
    • 3
  • Veera M. Boddu
    • 4
  1. 1.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  2. 2.Nuclear Engineering Teaching LaboratoryCockrell School of EngineeringAustinUSA
  3. 3.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  4. 4.Environmental Processes BranchUS Army Engineer Research and Development CenterChampaignUSA

Personalised recommendations