Hexanitrostilbene (HNS)

  • Dabir S. ViswanathEmail author
  • Tushar K. Ghosh
  • Veera M. Boddu


This chapter summarizes the properties of 2, 2′, 4, 4, 6, 6′ hexanitrostilbene (HNS) relative to more common thermally stable explosives. The very fine crystalline HNS material, purified by extraction of impurities, is designated as HNS-I. HNS-II is a larger particle-size, higher bulk-density, free-flowing material obtained by recrystallization of HNS-I.


Hexanitrostilbene (HNS) Basic Carboxylate Aqueous Sodium Hypochlorite Solution Controlled Mixing Regimes Methanolic Potassium Hydroxide Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Neyer BT, Cox L, Stoutenborough T, Tomasoski R (2003) HNS-IV explosive properties and characterization tests. 39th AIAA/ASME/-SAE/ASEE Joint Propulsion Conference and Exhibit AIAA-2003-5138, Huntsville AL July 20–24, 2003Google Scholar
  2. 2.
    Golopol HA, Fields DB, Moody GL (1977) A new booster explosive. LX-15, Rev. 1, NTIS Report UCRL-52175, March 18, 1977Google Scholar
  3. 3.
    Shipp KG (1964) Reactions of α-substituted polynitrotoluenes. i. synthesis of 2,2′,4,4′,6,6′-hexanitrostilbene. J Org Chem 29(9):2620–2623CrossRefGoogle Scholar
  4. 4.
    Reich S, Wetter O, Widmer M (1912) Über das 2.4.6-trinitro-benzylbromid und seine derivate. Ber Dtsch Chem Ges 45(3):3055–3061CrossRefGoogle Scholar
  5. 5.
    Shipp KG, Kaplan LA (1966) Reactions of α-substituted polynitrotoluenes. ii. the generation and reactions of 2,4,6-trinitrobenzyl anion. J Org Chem 31:857–861CrossRefGoogle Scholar
  6. 6.
    Shipp KG (1970) Hexanitrostilbene. US Pat 3 505 413 AGoogle Scholar
  7. 7.
    Kayser EG (1983) An investigation of the Shipp hexanitrostilbene (HNS) process. J Energy Mater 1(4):325–348CrossRefGoogle Scholar
  8. 8.
    Singh B, Singh H (1982) Synthesis of 2,2′,4,4′,6,6′-hexanitrostilbene. Def Sci J 31(4):305–308CrossRefGoogle Scholar
  9. 9.
    Kilmer EE (1979) Hexanitrostilbene—survey of processes of synthesis and sources of procurement. Proc Symp Explos Pyrotech 10th: Paper No 6–7 ppGoogle Scholar
  10. 10.
    Kompolthy T, Bencz G, Deres J, Hajos L (1975) A Process for the preparation of 2,2′,4,4′,6,6′-hexanitrostilbene. 28 April 1975. Hung. Teljes, HU 9639 19750428Google Scholar
  11. 11.
    Kompolthy T, Bencz G, Deres J, Hajos L (1975) Process for production 2,2′,4,4′,6,6′-hexanitrostilbene. Hungarian Patent HU167394, 28 Oct 1975Google Scholar
  12. 12.
    Kompolthy T, Deres J, Hajos LL (1976) 2,2′,4,4′,6,6′-hexanitrostilbene. Chem Abstr 84:58886Google Scholar
  13. 13.
    Singh B, Malhotra RK (1983) Hexanitrostilbene and its properties. Def Sci J 33(2):165–176CrossRefGoogle Scholar
  14. 14.
    Sleadd B, Greer P, Mueller G, Owens J (2007) Process improvement studies for scale-up of hns at holston army ammunition plant. NDIA insensitive munitions & energetic materials technology symposium 2007, BAE SYSTEMS OSI, Holston Army Ammunition PlantGoogle Scholar
  15. 15.
    Morris J, Clark G, Price D (2009) Process improvement studies for scale-up of hns at holston army ammunition plant. BAE SYSTEMS OSI, Holston Army Ammunition PlantGoogle Scholar
  16. 16.
    Duffin HC, Golding P, Jaweera-Bandar AM (1986) Production of hexanitrostilbene (HNS). US 4626606 A Dec 2, 1986Google Scholar
  17. 17.
    Duffin HC, Golding P, Wells CHJ (1998) A Parametric study of the synthesis of 4, 4H, 5, 5H, 7, 7H-Hexanitro-1, 1H-Binaphthyl. Propellants Explosives, …, Scholar
  18. 18.
    Duffin HC, Golding P, Jaweera-Bandara AM (1985) Production of hexanitrostilbene (hns). Secr Defence Brit, February 13, 1985: EP0132990-A2 (2 worldwide citation)Google Scholar
  19. 19.
    Gilbert EE (1980) The preparation of hexanitrostilbene from hexanitrobibenzyl. Propellants Explos 5(6):168–172CrossRefGoogle Scholar
  20. 20.
    Sollott GP (1982) Conversion of 2,4,6-trinitrobenzyl chloride to 2,2′,4,4′,6,6′-hexanitrostilbene by nitrogen bases. J Org Chem 47(12):2471–2474CrossRefGoogle Scholar
  21. 21.
    Morris J, Price D, Tucker N, Dye T, Kelly T (2015) BAE systems energetics pilot plant. Insensitive munitions & energetic material technology symposium 2015, BAE Systems Ordnance Systems Inc. Holston Army Ammunition Plant, Kingsport TN, USAGoogle Scholar
  22. 22.
    Bellamy AJ (2010) Synthesis of Hexanitrostilbene (HNS) using a kenics static mixer. Org Process Res Dev 14(3):632–639CrossRefGoogle Scholar
  23. 23.
    Golding P, Hayes GF (1979) Studies on the synthesis of 2,2′,4,4′,6,6′-hexanitrostilbene. Propellants Explos 4(6):115–120CrossRefGoogle Scholar
  24. 24.
    Golding P, Jayaweera-Bandara AM, Duffin HC, Charles H (1988) Production of hexanitrostilbene (HNS) from trinitrotoluene oxidation by transition metal compound. EP 1988-904587Google Scholar
  25. 25.
    Bellamy AJ (2010) Identification of α-chloro-2,2′,4,4′,6,6′-hexanitrobibenzyl as an impurity in hexanitrostilbene. J Energ Mater 28(1):1–16Google Scholar
  26. 26.
    Lu M, Sun R, Lu C, Hui J (1994) New method for synthesis of hexanitrostilbene. Nanjing Ligong Daxue Xuebao 5:8–11Google Scholar
  27. 27.
    Lu M (1994) Solvent effect on the reaction in two-step synthesis of hexanitrostilbene. Hanneng Cailiao 2(2):31–35Google Scholar
  28. 28.
    Orzechowski A, Powala D, Maranda A, Pawlowski W (2005) Crystallization of hexanitrostilben. New trends in research of energetic materials Proceedings 8th Seminar Pardubice Czech Republic, 2005 Apr 19–21, 2:687–694Google Scholar
  29. 29.
    Dacons JC (1981) Recrystallization of hexanitrostilbene from nitric acid and water. US Patent 4260837Google Scholar
  30. 30.
    Emeury JML (1980) Hexanitrostilbene for pyrotechnic applications. Eur Space Agency. [Spec Publ] ESA SP, (ESA SP-144 Explos Pyrotech-Appl Spat) 63–68Google Scholar
  31. 31.
    Golding P, Jayaweera-Bandara A, Duffin H (1988) Production of hexanitrostilbene (HNS). US 5023386 A, Brit UK Pat 2205312 16 ppGoogle Scholar
  32. 32.
    Gerard F, Hardy A (1988) Structure of 2,2′,4,4′,6,6′-hexanitrostilbene, HNS, a comparison with 2,4,6-trinitrotoluene, TNT. Acta Crystallo graphica Section C: Crystal Structure Communications C 44(7):1283–1287CrossRefGoogle Scholar
  33. 33.
    Chang HC, Tang CP, Chen YJ, Chang CL (1987) Molecular structures of 2,4,6-trinitrotoluene (TNT) and 2,2′,4,4′,6,6′-hexanitrostilbene (HNS). Internationale Jahrestagung-Fraunhofer-Institut fuer Treib- und Explosiv- stoffe 18th (Technol Energ Mater) 51/1-51/13Google Scholar
  34. 34.
    Wang G-X, C-h Shi, X-d Gong, H-m Xiao (2009) Theoretical investigation on structures, densities, detonation properties, and the pyrolysis mechanism of the derivatives of HNS. J Phys Chem A 113(7):1318–1326CrossRefGoogle Scholar
  35. 35.
    Shu X, Tian Y, Song G, Zhang H, Kang B, Zhang C, Liu Y, Liu X, Sun J (2011) Thermal expansion and theoretical density of 2,2′,4,4′,6,6′-hexanitrostilbene. J Mater Sci 46(8):2536–2540CrossRefGoogle Scholar
  36. 36.
    Meyer R, Kohler J, Homburg A (2002) Explosives. 5th ed Wiley–VCHGoogle Scholar
  37. 37.
    Calculated using Advanced Chemistry Development (ACD/Labs) Software V904 for Solaris (1994–2008) (ACD/Labs)Google Scholar
  38. 38.
    Environment Agency (2000) Collation of. toxicological data and development of guideline values for expansion substances. R&D Project Record P5-036/01, Bristol, 2000Google Scholar
  39. 39.
    Martantz S, Armstrong GT (1968) Heats of combustion of trans-stilbene and trans-2,2′,4,4′,6,6′-hexanitrostilbene (HNS). J Chem Eng Data 13:118–121CrossRefGoogle Scholar
  40. 40.
    Osmont A, Catoire L, Gökalp I, Yang V (2007) Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds. Combust Flame 151:262–273CrossRefGoogle Scholar
  41. 41.
    Rosen JM, Dickinson C (1969) Vapor pressures and heats of sublimation of some high melting organic explosives. J Chem Eng Data 14:120–124CrossRefGoogle Scholar
  42. 42.
    Ornellas DL (1982) Calorimetric determinations of the heat and products of detonation for explosives: October 1961 to April 1982. Rep UCRL-52821, LLNL, USAGoogle Scholar
  43. 43.
    Department Of The Army Technical Manual (1984) Military Explosives, TM 9-1300-214 Department of Army, September 1984Google Scholar
  44. 44.
    Williams DL, Kuklenz KD (2009) A determination of the hansen solubility parameters of hexanitrostilbene (HNS). Propellants, Explos, Pyrotech 34(5):452–457CrossRefGoogle Scholar
  45. 45.
    Lewis IR, Daniel NW Jr, Griffiths PR (1997) Interpretation of raman spectra of nitro-containing explosive materials: Part I: Group frequency and structural class membership. Appl Spectros 51:1854–1867CrossRefGoogle Scholar
  46. 46.
    Clement D, Rudolf K (2006 Apr 19–21) Hexanitrostilbene—density dependent sensitivity. New Trends in Research of Energetic Materials Proc 9th Seminar Pardubice Czech Republic 540–543Google Scholar

Additional Scholarly Articles for Further Reading

  1. 47.
    Achuthan CP, Samudre SS, Gharia JS (1984) Hexanitrostilbene—a heat-resistant explosive. J Sci Ind Res 43(4):197–199Google Scholar
  2. 48.
    Aziz A, Cartwright M, Hill CJ (1996) Thermal stability of the crystallization nucleant: 2,4,6-trinitrotoluene, TNT, and 2,2′,4,4′,6,6′-hexanitrostilbene. HNS. J Therm Anal 47(6):1617–1628. doi: 10.1007/BF01980908 CrossRefGoogle Scholar
  3. 49.
    Bellamy AJ, Brzoska E (2003) Contamination of explosive materials with N-methylpyrrolidin-2-one (NMP). J Energ Mater 21(1):43–55. doi: 10.1080/07370650305583 CrossRefGoogle Scholar
  4. 50.
    Bellamy AJ, Price TP, Mahon MF, Drake R, Mansell J (2005) Crystal structure of the 1:1 adduct of hexanitrostilbene and dioxane. J Energ Mater 23(1):33–41. doi: 10.1080/07370650590920278
  5. 51.
    Can Z, Uezer A, Tekdemir Y, Ercag E, Tuerker L, Apak R (2012) Spectrophotometric and chromatographic determination of insensitive energetic materials: HNS and NTO, in the presence of sensitive nitro-explosives. Talanta 90:69–76. doi: 10.1016/j.talanta.2011.12.077
  6. 52.
    Cartwright M, Collett GC (1993) Effect of additives on the nucleation of TNT. J Energy Mater 11(3):167–193. doi: 10.1080/07370659308227809
  7. 53.
    Cartwright M, Hill CJ (1995) Thermal investigation of the crystallization nucleant formed between 2,4,6-trinitrotoluene, (TNT) and 2,2′,4,4′,6,6′-hexanitrostilbene (HNS). J Therm Anal 44(5):1021–1036. doi: 10.1007/BF02547530
  8. 54.
    Casetta B, Garofolo F (1994) Characterization of explosives by liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry using electrospray ionization and parent-ion scanning techniques. Org Mass Spectrom 29(10):517–525. doi: 10.1002/oms.1210291002
  9. 55.
    Chen L-Z, Zhou F-R, Wang J-L (2014) Solubilities of 2,4,6-Trinitrotoluene in Methanol and Binary Mixtures of Methanol + Water from 293.15 to 333.15 K. J Solution Chem 43(12):2163–2169. doi: 10.1007/s10953-014-0263-3
  10. 56.
    Clement D, Rudolf KP (2007) The shock initiation threshold of HNS as a function of its density. Propellants, Explos, Pyrotech 32(4):322–325. doi: 10.1002/prep.200700035
  11. 57.
    da Silva G, Iha K, Cardoso AM, Mattos EC, Dutra RdCL (2010) Study of the thermal decomposition of 2,2′,4,4′,6,6′-hexanitrostilbene. J Aerosp Technol Manage 2(1):41–46Google Scholar
  12. 58.
    Du Z, Zhang R, Fu D, Tong H, Li F (2012) Study on cook-off test of HNS at constant temperatures. Procedia Eng 45:580–583. doi: 10.1016/j.proeng.2012.08.207
  13. 59.
    Fourmigue M, Boubekeur K, Batail P, Renouard J, Jacob G (1998) Light-induced detonant materials: charge-transfer complexes of tetrathiafulvalene (TTF) with hexanitrostilbene (HNS) and tetraazidoquinone (TAZQ) and their associated C-H···O hydrogen-bonded networks. New J Chem 22(8):845–850. doi: 10.1039/a709257a
  14. 60.
    Gallo AE, Tench N (1984) Commissioning of a production plant for hexanitrostilbene. J Hazard Mater 9(1):5–11. doi: 10.1016/0304-3894(84)80002-3
  15. 61.
    Golding P, Hayes GF (1983) A parametric study of the synthesis of 2,2′,4,4′,6,6′-hexanitrostilbene from trinitrotoluene and sodium hypochlorite. Propellants, Explos, Pyrotech 8(2):35–39. doi: 10.1002/prep.19830080202
  16. 62.
    Huang P, Shi W (2011) Study on terahertz time-domain spectroscopy of HNS by sample measure and quantum chemistry calculation. Propellants, Explos, Pyrotech 36(6):513–518. doi: 10.1002/prep.201010041
  17. 63.
    Kaur J, Arya VP, Kaur G, Gupta YP, Verma MM, Lata P (2010) Determination of solvent contamination and characterization of ultrafine HNS particles after solvent recrystallization. Propellants, Explos, Pyrotech 35(5):487–493. doi: 10.1002/prep.200800094
  18. 64.
    Kaur J, Arya VP, Kaur G, Lata P (2013) Evaluation of the thermomechanical and explosive properties of bimodal and hybrid polymer bonded explosive (PBX) compositions based on HNS and HMX. Cent Eur J Energy Mater 10(3):371–391Google Scholar
  19. 65.
    Kilmer EE (1968) Heat-resistant explosives for space applications. J Spacecraft Rockets 5(10):1216–1219. doi: 10.2514/3.29452
  20. 66.
    Kony M, Dagley IJ, Whelan DJ (1992) Deuterium isotope effects on the rates of thermal decomposition of 2,2′,4,4′,6,6′-hexanitrostilbene in the condensed phase. J Phys Chem 96(20):8001–8006. doi: 10.1021/j100199a034
  21. 67.
    Lee J-S, Hsu C-K, Chang C-L (2002) A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochim Acta 392–393:173–176. doi: 10.1016/S0040-6031(02)00099-0
  22. 68.
    Liu G-h, Ye Z, Li H, Che R, Cui L (2012) Biological treatment of hexanitrostilbene (HNS) produced wastewater using an anaerobic-aerobic immobilized microbial system. Chem Eng J (Amsterdam, Neth) 213:118–124. doi: 10.1016/j.cej.2012.09.115
  23. 69.
    Liu R, Zhang T, Zhou Z, Yang L, Yu W (2015) Nanoscale Effect on Thermal Decomposition of 2,2′,4,4′,6,6′-hexanitrostilbene by Dynamic Pressure Measuring Thermal Analysis. J Energ Mater 33(1):34–50. doi: 10.1080/07370652.2013.877103
  24. 70.
    Lu T, Yao K, Mao Y, Xu J, Wang P, Lu M (2013) A Novel and Efficient Synthesis of Hexanitrostilbene by N-Hydroxyphthalimide/FeCl2-Catalyzed Aerobic Dehydrogenation of Hexanitrobibenzyl. J Energ Mater 31(3):217–223. doi: 10.1080/07370652.2012.710870
  25. 71.
    Lu T-t, Lu M (2012) Efficient 2,2,6,6-tetramethylpiperidine-1-oxyl/iron catalyzed aerobic dehydrogenation of hexanitrobibenzyl to hexanitrostilbene. J Chin Chem Soc (Weinheim, Ger) 59(7):899–903. doi: 10.1002/jccs.201100473
  26. 72.
    Minier LM, Oxley JC (1990) Thermolysis of nitroarenes: 2,2′,4,4′,6,6′-hexanitrostilbene. Thermochim Acta 166:241–249. doi: 10.1016/0040-6031(90)80185-2
  27. 73.
    Mohan VK, Field JE (1984) Impact initiation of hexanitrostilbene. Combust Flame 56(3):269–277. doi: 10.1016/0010-2180(84)90061-0
  28. 74.
    Oxley JC, Smith JL, Yue J, Moran J (2004) Hypergolic reactions of TNT. Proc NATAS Annu Conf Therm Anal Appl 32nd:113.17.583/1–113.17.583/7Google Scholar
  29. 75.
    Parry MA, Thorpe BW (1979) The role of HNS (2,2′,4,4′,6,6′-hexanitrostilbene) in the grain modification of TNT. J Cryst Growth 47(4):541–550. doi: 10.1016/0022-0248(79)90137-4
  30. 76.
    Philp DK, Thorpe BW (1976) Nucleation of 2,4,6-trinitrotoluene by 2,2′,4,4′,6,6′-hexanitrostilbene. J Cryst Growth 35(2):133–138Google Scholar
  31. 77.
    Qian W, Shu Y, Li H, Ma Q (2014) The effect of HNS on the reinforcement of TNT crystal: a molecular simulation study. J Mol Model 20(10):1–7. doi: 10.1007/s00894-014-2461-8
  32. 78.
    Rieckmann T, Volker S, Lichtblau L, Schirra R (2001) Investigation on the thermal stability of hexanitrostilbene by thermal analysis and multivariate regression. Chem Eng Sci 56(4):1327–1335. doi: 10.1016/S0009-2509(00)00355-9
  33. 79.
    Rieckmann T, Volker S, Lichtblau L, Schirra R (2001) Thermal decomposition of hexanitrostilbene at low temperatures. J Anal Appl Pyrolysis 58–59:569–587. doi: 10.1016/S0165-2370(00)00177-7
  34. 80.
    Selig W, Schroyer B, Silveira VG, Smathers ER (1972) Charge transfer complexes of 2,2′,4,4′,6,6′ hexanitrostilbene (HNS). Explosivstoffe 20(11–12):204–218Google Scholar
  35. 81.
    Setchell RE (1984) Grain-size effects on the shock sensitivity of hexanitrostilbene (HNS) explosive. Combust Flame 56(3):343–345Google Scholar
  36. 82.
    Setchell RE, Taylor PA (1988) A refined equation of state for unreacted hexanitrostilbene. J Energy Mater 6(3–4):157–199. doi: 10.1080/07370658808012553
  37. 83.
    Shui M et al. (2013) Photothermal decomposition of HNS at 532 nm. Opt (Munich, Ger) 124(23):6115–6118. doi: 10.1016/j.ijleo.2013.04.089
  38. 84.
    Sitzmann ME, Foti SC (1975) Solubilities of explosives. Dimethylformamide as general solvent for explosives. J Chem Eng Data 20(1):53–55. doi: 10.1021/je60064a032
  39. 85.
    Sun Y et al (2013) Laser-induced decomposition of 2,2′,4,4′,6,6′-hexanitrostilbene at 263, 527 and 1053 nm. Asian J Chem 25(8):4247–4250. doi: 10.14233/ajchem.2013.13914
  40. 86.
    Sun Y, Xu T, Shu Y, Zhong F (2013) UV-induced photodecomposition of 2, 2′, 4, 4′, 6, 6′-hexanitrostilbene (HNS). Mater Sci-Pol 31(3):306–311. doi: 10.2478/s13536-013-0105-9
  41. 87.
    Taylor RE, Groot H, Donaldson AB (1983) Thermal diffusivity of hexanitrostilbene (HNS) high explosive. Therm Conduct 16:251–260Google Scholar
  42. 88.
    Teipel U, Mikonsaari I (2002) Size reduction of particulate energetic material. Propellants, Explos, Pyrotech 27(3):168–174. doi: 10.1002/1521-4087(200206)27:3<168:AID-PREP168>3.0.CO;2-D
  43. 89.
    Wang G, Gong X, Xiao H (2013) A theoretical study on the vibrational spectra and thermodynamic properties for the derivatives of HNS with -CH3, -N3, and -NF2 groups. Adv Mater Res (Durnten-Zurich, Switz) 742:202–208. doi: 10.4028/
  44. 90.
    Wang G-X, Gong X-D, Liu Y, Xiao H-M (2013) A theoretical study on the infrared spectra, thermodynamic functions, and detonation parameters for the -CN, -NC, -NNO2, and -ONO2 derivatives of HNS. J Theor Comput Chem 12(1):1250095/1–1250095/14. doi: 10.1142/S0219633612500952
  45. 91.
    Wang J et al (2009) Prefilming twin-fluid nozzle assisted precipitation method for preparing nanocrystalline HNS and its characterization. J Hazard Mater 162(2–3):842–847. doi: 10.1016/j.jhazmat.2008.05.107
  46. 92.
    Waschl J, Richardson D (1991) Effect of specific surface area on the sensitivity of hexanitrostilbene to flyer plate impact. J Energy Mater 9(4):269–282. doi: 10.1080/07370659108018628
  47. 93.
    Waschl JA (1996) Temperature effects on the performance of a complete explosive device. J Energy Mater 14(3 & 4):153–171. doi: 10.1080/07370659608216062
  48. 94.
    Zengguo F, Boren C (1994) Studies on reactions of polynitrostilbenes with sodium azide. J Energy Mater 12(4):237–247. doi: 10.1080/07370659408018653
  49. 95.
    Zhu W, Shi C, Xiao H (2009) Density functional theory study of high-pressure behavior of crystalline hexanitrostilbene. J Mol Struct: THEOCHEM 910(1–3):148–153. doi: 10.1016/j.theochem.2009.06.029

Copyright information

© US Government (outside the USA) 2018

Authors and Affiliations

  • Dabir S. Viswanath
    • 1
    • 2
    Email author
  • Tushar K. Ghosh
    • 3
  • Veera M. Boddu
    • 4
  1. 1.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  2. 2.Nuclear Engineering Teaching LaboratoryCockrell School of EngineeringAustinUSA
  3. 3.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  4. 4.Environmental Processes BranchUS Army Engineer Research and Development CenterChampaignUSA

Personalised recommendations