2,4 Dinitroanisole (DNAN)

  • Dabir S. ViswanathEmail author
  • Tushar K. Ghosh
  • Veera M. Boddu


DNAN was historically used as an explosive in warheads containing Amatol 40 and is currently being investigated as a replacement for 2,4,6-Trinitrotoluene (TNT) in melt-cast insensitive munitions (IM) formulations. Alternatives with suitable chemical and physical properties have been sought. 2,4-Dinitroanisole (DNAN) is a promising alternative that prima facie appears to possess adequate properties and, by virtue of reduced sensitivity, may enable the development of a new class of low sensitivity melt-cast formulations for use in Insensitive Munitions (IM). This chapter provides an overview of DNAN including its synthesis, characterization, and basic properties. In addition, the sensitivity and explosive properties of various DNAN-based formulations (containing RDX and/or NTO) are discussed.


  1. 1.
    Nielson DB, Ashcroft BN, Doll DW (2005) Incendiary and armor-piercing munitions containing metal fuels, oxidizer, and Class 1.1 explosives (USA). US Pat Appl Publ (2005), US 2005199323 A1 20050915Google Scholar
  2. 2.
    Davies PJ, Provatas A (2006) Characterization of 2,4-Dinitroanisole: an ingredient for use in low sensitivity melt cast formulations. Australian Government, Department of Defense Report DSTO-TR-1904Google Scholar
  3. 3.
    Salter-Blanc AJ, Bylaska EJ, Johnston HJ, Tratnyek PG (2015) Predicting reduction rates of energetic nitroaromatic compounds using calculated one-electron reduction potentials. Environ Sci Technol 49(6):3778–3786. doi: 10.1021/es505092s
  4. 4.
    Barnett JW, Moodie RB, Schofield K, Weston JB, Coombes RG, Golding JG, Tobin GD (1977) Electrophilic aromatic substitution part 162 the nitration of anisole, o-methylanisole, and p-methylanisole in aqueous sulphuric acid. J Chem Soc Perkin Trans 248–255Google Scholar
  5. 5.
    Dey BB, Govindachari TR, Udupa HK (1946) Preparation of 4-chloro-2-nitroanisole, 4-chloro-2-nitrophenetole, 2,4-dinitroanisole, and 2,4-dinitro–phenetole. J Sci Indus Res, Sect B: Phys Sci 5B(3):37–40Google Scholar
  6. 6.
    Holleman F, Wilhelmy G (1902) Preparation of the dinitrophenols and dinitroanisoles, and certain of their physical properties. Recl Trav Chim Pays-Bas 21:432–447Google Scholar
  7. 7.
    Xu W, Duan Y, Liu X (2006) Faming Zhuanli Shenqing Gongkai Shuomingshu. Chinese Patent 1861564 and 1861565Google Scholar
  8. 8.
    Holt P, Johnston G, Sanderson AJ, Wesson P, Worthington J (2004) Development of an efficient and green TNT manufacturing process. IM/EM Technical Symposium, San Francisco, CA, 15–17 NovemberGoogle Scholar
  9. 9.
    Xia X-Z, Xu Z-L, Li F, Zhao G-S (2010) Study on the synthesis of 2,4-dinitroanisole with TEBA as phase transfer catalys. Huaxue Shijie 51(3):162–164Google Scholar
  10. 10.
    Muller P (1994) Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure Appl Chem 66(5):1077–1184CrossRefGoogle Scholar
  11. 11.
    Nyburg SC, Faerman CH, Prasad L, Palleros D, Nudelman N (1987) Structures of 2,4-dinitroanisole and 2,6-dinitroanisole. Acta Crystallogr C 43:686–689CrossRefGoogle Scholar
  12. 12.
    Malinovskii ST, Fonar MS, Simonov YA, Dvorkin AA, Ganin EV, Luk’yanenko NG, Musienko GS (1992) Crystal and molecular structures of the host-guest type of complex of 18-crown-6 with 24-dinitroanisole and 2–4-dinitroanisole in the free state. Kristallografiya (Crystallogr Rep) 37:671–673Google Scholar
  13. 13.
    Xue G, Gong C-R, Chen H-Y (2007) Crystal structure of 2,4-dinitroanisole C7H6N2O5 Z. Kristallogr 222:321–322Google Scholar
  14. 14.
    Greenberg D (2006) Spectral data were obtained from Wiley Subscription Services, Inc. (US). Wiley STM Databases, Wiley Launches, Wiley Registry of Mass Spectral Data, 8th ednGoogle Scholar
  15. 15.
    Yamaji T, Saito T, Hayamizu K, Yanagisawa M, Yamamoto O (2017) Integrated spectral database system of organic compounds, National Institute of Advanced Industrial Science and Technology, Spectrum ID: NIDA8188). (Japan)
  16. 16.
    Calculated using Advanced Chemistry Development (ACD/Labs) Software V904 for Solaris (1994–2008 ACD/Labs)Google Scholar
  17. 17.
    Syracuse research corporation databaseGoogle Scholar
  18. 18.
    Toghiani RK, Toghiani H, Maloney SW, Boddu VM (2008) Prediction of physicochemical properties of energetic materials. Fluid Phase Equilib 264:86–92CrossRefGoogle Scholar
  19. 19.
    Chakka S, Boddu VM, Maloney SW, Damavarapu R, Paper Presented At the AIChE MeetingGoogle Scholar
  20. 20.
    Mehrotra NK, Shukla JP, Saxena MC (1967) Relaxation times and dipole moments of some substituted benzenes having hydroxyl, methoxy, or ethoxy groups. Indian J Pure Appl Phys 5(2):61–63Google Scholar
  21. 21.
    Boddu VM, Abburi K, Fredricksen AJ, Maloney SW, Damavarapu R (2009) Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons. Environ Technol 30(2):173–181CrossRefGoogle Scholar
  22. 22.
    Boddu VM, Abburi K, Maloney SW, Damavarapu R (2008) Thermophysical properties of an insensitive munitions compound, 2,4-dinitroanisole. J Chem Eng Data 53:1120–1125CrossRefGoogle Scholar
  23. 23.
    Potoff J (2007) Prediction of environmental impact of high-energy materials with atomistic computer simulations. Annual Report, Contract Number W9132–06-2-2027Google Scholar
  24. 24.
    Highsmith TK, Johnston HE (2004) Continuous process for preparing alkoxynitroarenes. US Patent 0133046Google Scholar
  25. 25.
    Desvergnes L (1994) Sur quelques proprie´ te´ s physiques des de´ rive´ s nitre´ s. Monit Scient 14(5 series):249–257Google Scholar
  26. 26.
    Bausinger T, Preuss J (2008) Stability of nitroaromatic specialty explosives in reversed-phase liquid chromatographic systems. J Hazard MaterGoogle Scholar
  27. 27.
    Boddu VM, Abburi K, Maloney SW, Damavarapu R (2010) Physicochemical property measurements on insensitive munitions compounds for environmental applications. CRC Press, Boca Raton, pp 139–160Google Scholar
  28. 28.
    Zhao X, Chen X, Chen L (1997) Hydrogenation of 2,4–dinitroanisole in liquid phase. Jingxi Huagong 14(5):41–43 (in Chinese)Google Scholar
  29. 29.
    Perreault NN, Manno D, Halasz A, Thiboutot S, Ampleman G, Hawai J (2012) Biodegradation 23:287–295CrossRefGoogle Scholar
  30. 30.
    Platten WE, Bailey D, Suidan MT, Maloney SW (2010) Chemosphere 81:11CrossRefGoogle Scholar
  31. 31.
    Schechter S, Haller HL (1944) Colorimetric determination of 2,4-dinitroanisole. Ind Eng Chem Anal Ed 16:325CrossRefGoogle Scholar
  32. 32.
    Chow TM, Wilcoxon MR, Piwoni MD, Maloney SW (2009) Analysis of new generation explosives in the presence of U.S. EPA method 8330 energetic compounds by high-performance liquid chromatography. J Chromatogr Sci 47(1):40–43. doi: 10.1093/chromsci/47.1.40 CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Zhang G, Dong H (2010) Review on melt-castable explosives based on 2,4-dinitroanisole. Chinese Journal of Energetic Materials Institute of Chemical Materials, CAEP, Mianyang, ChinaGoogle Scholar

Additional Scholarly Articles for Further Reading

  1. 35.
    Ahn SC, Cha DK, Kim BJ, Oh S-Y (2011) Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate. J Hazard Mater 192(2):909–914. doi: 10.1016/j.jhazmat.2011.05.104 CrossRefGoogle Scholar
  2. 36.
    Ahn SC, Hubbard B, Cha DK, Kim BJ (2014) Simultaneous removal of perchlorate and energetic compounds in munitions wastewater by zero-valent iron and perchlorate-respiring bacteria. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 49(5):575–583. doi: 10.1080/10934529.2014.859455 CrossRefGoogle Scholar
  3. 37.
    Arnett CM, Rodriguez G, Maloney SW (2009) Analysis of bacterial community diversity in anaerobic fluidized bed bioreactors treating 2,4-dinitroanisole (DNAN) and n-methyl-4-nitroaniline (MNA) using 16S rRNA gene clone libraries. Microbes Environ 24(1):72–75CrossRefGoogle Scholar
  4. 38.
    Bhatnagar N, Kamath G, Potoff JJ (2013) Prediction of 1-octanol-water and air-water partition coefficients for nitro-aromatic compounds from molecular dynamics simulations. Phys Chem Chem Phys 15(17):6467–6474. doi: 10.1039/c3cp44284e CrossRefGoogle Scholar
  5. 39.
    Boddu VM, Abburi K, Fredricksen AJ, Maloney SW, Damavarapu R (2009) Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons. Environ Technol 30(2):173–181. doi: 10.1080/09593330802422993 CrossRefGoogle Scholar
  6. 40.
    Boddu VM, Maloney SW (2012) Physical properties of insensitive munitions compounds for developing wastewater treatment technologies, vol 3. Air and Waste Management Association, pp 1958–1965Google Scholar
  7. 41.
    Capela D et al (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98(17):9877–9882. doi: 10.1073/pnas.161294398 CrossRefGoogle Scholar
  8. 42.
    Casjens S, Huang WM (1993) Linear chromosomal physical and genetic map of Borrelia burgdorferi, the Lyme disease agent. Mol Microbiol 8(5):967–980. doi: 10.1111/j.1365-2958.1993.tb01641.x CrossRefGoogle Scholar
  9. 43.
    Cayrou C, Turenne C, Behr MA, Drancourt M (2010) Genotyping of Mycobacterium avium complex organisms using multispacer sequence typing. Microbiology 156(3):687–694. doi: 10.1099/mic.0.033522-0
  10. 44.
    Chakka S, Boddu VM, Maloney SW, Toghiani RK, Damavarapu R (2009) Vapor pressures and melting points of select munitions compounds. American Institute of Chemical Engineers, pp chakk1/1-chakk1/9Google Scholar
  11. 45.
    Chauhan S, Tyagi JS (2011) Analysis of transcription at the oriC locus in Mycobacterium tuberculosis. Microbiol Res 166(6):508–514. doi: 10.1016/j.micres.2010.10.005 CrossRefGoogle Scholar
  12. 46.
    Chiaramello AE, Zyskind JW (1990) Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J Bacteriol 172(4):2013–2019CrossRefGoogle Scholar
  13. 47.
    Cho E, Ogasawara N, Ishikawa S (2008) The functional analysis of YabA, which interacts with DnaA and regulates initiation of chromosome replication in Bacillus subtilis. Genes Genet Syst 83(2):111–125. doi: 10.1266/ggs.83.111 CrossRefGoogle Scholar
  14. 48.
    Choung K-K, Estiva E, Bremer H (1981) Genetic and physiological characterization of a spontaneous mutant of Escherichia coli B/r with aberrant control of deoxyribonucleic acid replication. J Bacteriol 145(3):1239–1248Google Scholar
  15. 49.
    Cirz RT, O’Neill BM, Hammond JA, Head SR, Romesberg FE (2006) Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol 188(20):7101–7110. doi: 10.1128/JB.00807-06 CrossRefGoogle Scholar
  16. 50.
    Clark MA, Baumann L, Baumann P (1998) Sequence analysis of a 34.7-kb DNA segment from the genome of Buchnera aphidicola (endosymbiont of aphids) containing groEL, dnaA, the atp operon, gidA, and rho. Curr Microbiol 36(3):158–163. doi: 10.1007/PL00006760 CrossRefGoogle Scholar
  17. 51.
    Costales-Nieves C, Boddu VM, Maloney SW, Chakka S, Damavarapu R, Viswanath DS (2010) SPARC prediction of physical properties of explosive compounds. American Institute of Chemical Engineers, pp a291/1-a291/17Google Scholar
  18. 52.
    Coulouarn C, Aumasson R, Lamy-Bracq P, Bulot S (2014) Evaluation of melt-cast explosive compositions based on TNT and DNAN NEXTER Munitions. Int Annu Conf ICT 45th Energetic Materials: Particles, Processing, Applications): Coulouarn/1-Coulouarn/13, 13 ppGoogle Scholar
  19. 53.
    Cuddy MF, Poda AR, Chappell MA (2014) Estimations of Vapor Pressures by Thermogravimetric Analysis of the Insensitive Munitions IMX-101, IMX-104, and Individual Components. Propellants, Explos, Pyrotech 39(2):236–242. doi: 10.1002/prep.201300069 CrossRefGoogle Scholar
  20. 54.
    Dodard SG et al (2013) Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4-Dinitroanisole (DNAN). J Hazard Mater 262:143–150. doi: 10.1016/j.jhazmat.2013.08.043 CrossRefGoogle Scholar
  21. 55.
    Fischer D, Klapoetke TM, Stierstorfer J (2014) Oxalylhydrazinium nitrate and dinitrate—efficiency meets performance. J Energ Mater 32(1):37–49. doi: 10.1080/07370652.2012.750697 CrossRefGoogle Scholar
  22. 56.
    Golius A, Isayev O, Gorb L, Hill FC, Leszczynski J (2014) Energetic compounds as environmental contaminants: theoretical studies. American Chemical Society, p TOXI-118Google Scholar
  23. 57.
    Grau H, Gandzelko A, Samuels P (2014) Solubility determination of raw energetic materials in molten 2,4-dinitroanisole. Propellants, Explos, Pyrotech 39(4):604–608. doi: 10.1002/prep.201300083 CrossRefGoogle Scholar
  24. 58.
    Hawari J et al (2015) Environmental fate of 2,4-dinitroanisole (DNAN) and its reduced products. Chemosphere 119:16–23. doi: 10.1016/j.chemosphere.2014.05.047 CrossRefGoogle Scholar
  25. 59.
    Hoyt N et al (2013) Biomarkers of oral exposure to 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN) in blood and urine of rhesus macaques (Macaca mulatta). Biomarkers 18(7):587–594. doi: 10.3109/1354750X.2013.829522 CrossRefGoogle Scholar
  26. 60.
    Kennedy AJ et al (2015) Inter- and intraspecies chemical sensitivity: A case study using 2,4-dinitroanisole. Environ Toxicol Chem 34(2):402–411. doi: 10.1002/etc.2819 CrossRefGoogle Scholar
  27. 61.
    Kitcher E, Pavlov J, Koutsospyros A, Christodoulatos C, Braida W (2013) Reaction mechanism of the reductive removal of NTO and DNAN from IM wastewater using bimetals. American Chemical Society, p ENVR-238Google Scholar
  28. 62.
    Li Y, Hsieh W-P, Mahmudov R, Huang CP (2011) Treatment of ammunition wastewater using ultrasonic Fenton (US-Fenton) process. American Institute of Chemical Engineers, pp 399a/1–399a/16Google Scholar
  29. 63.
    Liang J, Olivares C, Field JA, Sierra-Alvarez R (2013) Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites. J Hazard Mater 262:281–287. doi: 10.1016/j.jhazmat.2013.08.046 CrossRefGoogle Scholar
  30. 64.
    Linker BR et al (2015) Adsorption of novel insensitive munitions compounds at clay mineral and metal oxide surfaces. Environ Chem 12(1):74–84. doi: 10.1071/EN14065 CrossRefGoogle Scholar
  31. 65.
    Liu R, Zhang T, Liu Y, Yang L, Zhou Z (2013) Evaporation characteristics of low-melting nitrocompounds by isothermal thermogravimetry. J Therm Anal Calorim 112(3):1523–1532. doi: 10.1007/s10973-012-2665-z CrossRefGoogle Scholar
  32. 66.
    Liu R, Zhang T, Yang L, Zhou Z Researches on vapor pressure and thermal decomposition of low-melting explosives. In, 2013. University of Pardubice, Institute of Energetic Materials, p 441–449Google Scholar
  33. 67.
    Liu R, Zhang T, Zhou Z, Yang L (2014) Volatilization interference in thermal analysis and kinetics of low-melting organic nitro compounds. RSC Adv 4(19):9810–9818. doi: 10.1039/c3ra47218c CrossRefGoogle Scholar
  34. 68.
    Lopez-Canut V, Roca M, Bertran J, Moliner V, Tunon I (2011) Promiscuity in alkaline phosphatase superfamily. Unraveling evolution through molecular simulations. J Am Chem Soc 133(31):12050–12062. doi: 10.1021/ja2017575 CrossRefGoogle Scholar
  35. 69.
    Lotufo GR, Biedenbach JM, Sims JG, Chappell P, Stanley JK, Gust KA (2015) Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. Environ Toxicol Chem 34(4):880–886. doi: 10.1002/etc.2863 CrossRefGoogle Scholar
  36. 70.
    Mu R, Shi H, Yuan Y, Karnjanapiboonwong A, Burken JG, Ma Y (2012) Fast separation and quantification method for nitroguanidine and 2,4-dinitroanisole by ultrafast liquid chromatography-tandem mass spectrometry. Anal Chem 84(7):3427–3432. doi: 10.1021/ac300306p
  37. 71.
    Mudryy R (2011) Solidification modeling of DNAN based explosive compositions. Int Annu Conf ICT 42nd(Energetic Materials):111/1–111/11Google Scholar
  38. 72.
    Muscat D et al (2000) In-source decay of hyperbranched polyesteramides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom 11(3):218–227. doi: 10.1016/S1044-0305(99)00141-5 CrossRefGoogle Scholar
  39. 73.
    Niedzwiecka JB, Millerick KA, Galloway S, Schlautman MA, Finneran KT (2014) Microbially mediated 2, 4-dinitroanisole (DNAN) degradation. American Chemical Society, p ENVR-48Google Scholar
  40. 74.
    Olivares C, Liang J, Abrell L, Sierra-Alvarez R, Field JA (2013) Pathways of reductive 2,4-dinitroanisole (DNAN) biotransformation in sludge. Biotechnol Bioeng 110(6):1595–1604. doi: 10.1002/bit.24820 CrossRefGoogle Scholar
  41. 75.
    Platten WE III, Bailey D, Suidan MT, Maloney SW (2010) Biological transformation pathways of 2,4-dinitro anisole and N-methyl paranitro aniline in anaerobic fluidized-bed bioreactors. Chemosphere 81(9):1131–1136. doi: 10.1016/j.chemosphere.2010.08.044 CrossRefGoogle Scholar
  42. 76.
    Platten WE, III, Bailey D, Suidan MT, Maloney SW (2013) Treatment of energetic wastewater containing 2,4-dinitroanisole and N-methyl paranitro aniline. J Environ Eng 139(1):104–109. doi: 10.1061/(ASCE)EE.1943-7870.0000592
  43. 77.
    Provatas A, Wall C (2011) Thermal testing of 2,4-dinitroanisole (DNAN) as a TNT replacement for melt-cast explosives. Int Annu Conf ICT 42nd(Energetic Materials):6/1–6/12Google Scholar
  44. 78.
    Richard T, Weidhaas J (2014) Biodegradation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine. J Hazard Mater 280:372–379. doi: 10.1016/j.jhazmat.2014.08.019 CrossRefGoogle Scholar
  45. 79.
    Richard T, Weidhaas J (2014) Dissolution, sorption, and phytoremediation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine. J Hazard Mater 280:561–569. doi: 10.1016/j.jhazmat.2014.08.042 CrossRefGoogle Scholar
  46. 80.
    Russell AL, Seiter JM, Coleman JG, Winstead B, Bednar AJ (2014) Analysis of munitions constituents in IMX formulations by HPLC and HPLC-MS. Talanta 128:524–530. doi: 10.1016/j.talanta.2014.02.013 CrossRefGoogle Scholar
  47. 81.
    Saad R, Radovic-Hrapovic Z, Ahvazi B, Thiboutot S, Ampleman G, Hawari J (2012) Sorption of 2,4-dinitroanisole (DNAN) on lignin. J Environ Sci 24(5):808–813. doi: 10.1016/S1001-0742(11)60863-2
  48. 82.
    Salter-Blanc AJ, Bylaska EJ, Johnston HJ, Tratnyek PG (2015) Predicting reduction rates of energetic nitroaromatic compounds using calculated one-electron reduction potentials. Environ Sci Technol 49(6):3778–3786. doi: 10.1021/es505092s CrossRefGoogle Scholar
  49. 83.
    Salter-Blanc AJ, Bylaska EJ, Ritchie JJ, Tratnyek PG (2013) Mechanisms and kinetics of alkaline hydrolysis of the energetic nitroaromatic compounds 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN). Environ Sci Technol 47(13):6790–6798. doi: 10.1021/es304461t CrossRefGoogle Scholar
  50. 84.
    Scott AM, Burns EA, Hill FC (2014) Theoretical study of adsorption of nitrogen-containing environmental contaminants on kaolinite surfaces. J Mol Model 20(8):1–13. doi: 10.1007/s00894-014-2373-7 CrossRefGoogle Scholar
  51. 85.
    Scott AM, Burns EA, Hill FC (2014) Theoretical study of adsorption of nitrogen-containing environmental contaminants on kaolinite surfaces. J Mol Model 20(8):2373CrossRefGoogle Scholar
  52. 86.
    Scott AM, Burns EA, Lafferty BJ, Hill FC (2015) Theoretical predictions of thermodynamic parameters of adsorption of nitrogen containing environmental contaminants on kaolinite. J Mol Model 21(2):1–16. doi: 10.1007/s00894-015-2577-5 CrossRefGoogle Scholar
  53. 87.
    Scott AM, Burns EA, Lafferty BJ, Hill FC (2015) Theoretical predictions of thermodynamic parameters of adsorption of nitrogen containing environmental contaminants on kaolinite. J Mol Model 21(2):21CrossRefGoogle Scholar
  54. 88.
    Shen J et al (2013) Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process. J Hazard Mater 260:993–1000. doi: 10.1016/j.jhazmat.2013.07.003 CrossRefGoogle Scholar
  55. 59.
    Sokkalingam N, Ketko MH, Potoff JJ (2010) Physical property prediction of energetic materials from molecular dynamics simulation. CRC Press, Boca Raton, pp 37–62Google Scholar
  56. 90.
    Souza BS et al (2009) Hydrolysis of 8-quinolyl phosphate monoester: kinetic and theoretical studies of the effect of lanthanide ions. J Org Chem 74(3):1042–1053. doi: 10.1021/jo801870v CrossRefGoogle Scholar
  57. 91.
    Stanley JK, Lotufo GR, Biedenbach JM, Chappell P, Gust KA (2015) Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. Environ Toxicol Chem 34(4):873–879. doi: 10.1002/etc.2890 CrossRefGoogle Scholar
  58. 92.
    Sviatenko L et al (2014) Comprehensive investigations of kinetics of alkaline hydrolysis of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,4-dinitroanisole. Environ Sci Technol 48(17):10465–10474. doi: 10.1021/es5026678 CrossRefGoogle Scholar
  59. 93.
    Taylor S, Park E, Bullion K, Dontsova K (2015) Dissolution of three insensitive munitions formulations. Chemosphere 119:342–348. doi: 10.1016/j.chemosphere.2014.06.050 CrossRefGoogle Scholar
  60. 94.
    Trzcinski WA, Cudzilo S, Dyjak S, Nita M (2012) A comparison of sensitivity and performance characteristics of melt-pour explosives with TNT and DNAN binder. University of Pardubice, Institute of Energetic Materials, pp 893–901Google Scholar
  61. 95.
    Tsendra O et al (2014) Adsorption of nitrogen-containing compounds on the (100) α-quartz surface: Ab Initio cluster approach. J Phys Chem C 118(6):3023–3034. doi: 10.1021/jp406827h CrossRefGoogle Scholar
  62. 96.
    Verbenko VN, Kuznetsova LV, Luchkina LA, Klopov NV (2009) Mutation in the cspH–cspG gene cluster enhances expression of heat-shock proteins and SOS repair system of Escherichia coli. Russ J Genet 45(9):1047–1054. doi: 10.1134/S102279540909004X CrossRefGoogle Scholar
  63. 97.
    Walsh MR et al (2013) Characterization of PAX-21 insensitive munition detonation residues. Propellants, Explos, Pyrotech 38(3):399–409. doi: 10.1002/prep.201200150 CrossRefGoogle Scholar
  64. 98.
    Walsh MR et al (2014) Energetic residues from the detonation of IMX-104 insensitive munitions. Propellants, Explos, Pyrotech 39(2):243–250. doi: 10.1002/prep.201300095 CrossRefGoogle Scholar
  65. 99.
    Walsh MR, Walsh ME, Ramsey CA, Brochu S, Thiboutot S, Ampleman G (2013) Perchlorate contamination from the detonation of insensitive high-explosive rounds. J Hazard Mater 262:228–233CrossRefGoogle Scholar
  66. 100.
    Xiao L-B et al (2014) Thermochemical properties of 2,4-dinitroanisole in N-methyl pyrrolidone and dimethyl sulfoxide. J Therm Anal Calorim 118(3):1755–1761. doi: 10.1007/s10973-014-4042-6 CrossRefGoogle Scholar
  67. 101.
    Xing X et al (2012) Specific heat capacity, thermal behavior, and thermal hazard of 2,4-dinitroanisole. Propellants, Explos, Pyrotech 37(2):179–182. doi: 10.1002/prep.201000077 CrossRefGoogle Scholar
  68. 102.
    Xu Z, Hao J, Braida W, Strickland D, Li F, Meng X (2011) Surface-enhanced Raman scattering spectroscopy of explosive 2,4-dinitroanisole using modified silver nanoparticles. Langmuir 27(22):13773–13779. doi: 10.1021/la202560t CrossRefGoogle Scholar
  69. 103.
    Zabihi-Mobarakeh H, Nezamzadeh-Ejhieh A (2015) Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2,4-dinitroaniline aqueous solution. J Ind Eng Chem: Ahead of Print. doi: 10.1016/j.jiec.2014.12.003

Copyright information

© US Government (outside the USA) 2018

Authors and Affiliations

  • Dabir S. Viswanath
    • 1
    • 2
    Email author
  • Tushar K. Ghosh
    • 3
  • Veera M. Boddu
    • 4
  1. 1.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  2. 2.Nuclear Engineering Teaching LaboratoryCockrell School of EngineeringAustinUSA
  3. 3.Nuclear Science and Engineering InstituteUniversity of MissouriColumbiaUSA
  4. 4.Environmental Processes BranchUS Army Engineer Research and Development CenterChampaignUSA

Personalised recommendations