Advertisement

Arctic Ice Shelf Ecosystems

  • Anne D. JungblutEmail author
  • Derek Mueller
  • Warwick F. Vincent
Chapter
Part of the Springer Polar Sciences book series (SPPS)

Abstract

Arctic ice shelves are microbial ecosystems with a rich biodiversity. Until recently, polar ice shelves were seen as mostly abiotic glaciological features, however they are oases for life, with snow, meltwater pools and sediments providing cryohabitats for microbiota. The biological communities are composed of diverse forms of microscopic life, including cyanobacteria, heterotrophic bacteria, viruses, algae, other protists and microfauna, and occupy a variety of habitats: supraglacial meltwater lakes, englacial microhabitats within the ice and snow and planktonic environments in ice-dammed, epishelf lakes. These habitats are defined by seasonal light availability, cold temperatures and nutrient poor conditions. In the supraglacial pools, production is dominated by benthic microbial mat assemblages that have diverse stress adaptation systems and that use internal nutrient recycling and scavenging strategies. Despite short growth periods and perennial low temperatures, biomass accumulations are considerable, with a striking diversity of light-harvesting, UV-protection and other accessory pigments. The chemical characteristics such as conductivity and origin of salts are defined by the underlying ice types, and microbial mat studies from adjacent habitats show a high resilience to solute concentration during freeze-up. The structural integrity of these cryoecosystems is dependent on ice, and they are therefore vulnerable to climate change. Many of these unique Arctic ecosystems have been lost by ice shelf collapse over the last two decades, and they are now on the brink of complete extinction.

Keywords

Arctic ecosystems Benthic Biological production Cryosphere Ice shelf Microbial biodiversity 

Notes

Acknowledgements

This work has been supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chair program, le Fonds québécois de la recherche sur la nature et les technologies, the Northern Scientific Training Program, and the Network of Centre of Excellence program ArcticNet, with logistics support from the Polar Continental Shelf Program and Parks Canada. We thank Dominic Hodgson and an anonymous reviewer for their insightful comments on the manuscript.

References

  1. ACIA. (2005). Arctic climate impact assessment (pp. 1042). Cambridge: Cambridge University Press.Google Scholar
  2. Amato, P., Hennebelle, R. I., Maganda, O., Sancelme, M., Delort, A.-M., Barbante, C., Boutron, C., & Ferrari, C. (2007). Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiology Ecology, 59, 255–264.CrossRefGoogle Scholar
  3. Archer, S., McDonald, I., Herbold, C., & Cary, S. (2014). Characterization of bacterioplankton communities in the meltwater ponds of Bratina Island, Victoria Land, Antarctica. FEMS Microbiology Ecology, 89, 451–464.CrossRefGoogle Scholar
  4. Archer, D. J., McDonald, I. R., Herbold, C. W., Lee, C. K., & Cary, C. S. (2015). Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds. Frontiers in Microbiology, 6, 485. doi: 10.3389/fmicb.2015.00485.CrossRefGoogle Scholar
  5. Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A., & Rapp, J. Z. (2015). Microbial ecology of the cryosphere: Sea ice and glacial habitats. Nature Reviews Microbiology, 13, 677–690.CrossRefGoogle Scholar
  6. Bonilla, S., Villeneuve, V., & Vincent, W. F. (2005). Benthic and planktonic algal communities in a High Arctic lake: Pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology, 41, 1120–1130.CrossRefGoogle Scholar
  7. Bonilla, S., Rautio, M., & Vincent, W. F. (2009). Phytoplankton and phytobenthos pigment strategies: Implications for algal survival in the changing Arctic. Polar Biology, 28, 846–861.Google Scholar
  8. Bottos, E. M., Vincent, W. F., Greer, C. W., & Whyte, L. G. (2008). Prokaryotic diversity of arctic ice shelf microbial mats. Environmental Microbiology, 10, 950–966.CrossRefGoogle Scholar
  9. Brinkmeyer, R., Knittel, K., Jürgens, J., Weyland, H., Amann, R., & Helmke, E. (2003). Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Applied and Environmental Microbiology, 69, 6610–6619.CrossRefGoogle Scholar
  10. Cairns, A. A. (1967). The zooplankton of Tanquary Fjord, Ellesmere Island, with special reference to calanoid copepods. Journal of Fisheries Research Board of Canada, 24, 555–568.CrossRefGoogle Scholar
  11. Cameron, K. A., Hodson, A. J., & Osborn, A. M. (2012). Structure and diversity of bacterial, eukaryotic and archaean communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiology Ecology, 82, 254–267.CrossRefGoogle Scholar
  12. Castenholz, R. W. (1992). Species usage, concept, and evolution in the cyanobacteria (blue-green algae). Journal of Phycology, 28, 737–745.CrossRefGoogle Scholar
  13. Chrismas, N. A. M., Anesio, A. M., & Sánchez-Baracaldo, P. (2015). Multiple adaptations to polar and alpine environments within cyanobacteria: A phylogenomic and Bayesian approach. Frontiers in Microbiology, 6, 1070.CrossRefGoogle Scholar
  14. Christner, B. C., Cai, R., Morris, C., McCarter, K. S., Foreman, C. M., Skidmore, M. L., Montross, S. N., & Sands, D. C. (2008). Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proceedings of the National Academy of Sciences of the United States of America, 105, 18854–18859.Google Scholar
  15. Copland, L., Mueller, D. R., & Weir, L. (2007). Rapid loss of the Ayles Ice Shelf, Ellesmere Island, Canada. Geophysical Research Letters, 34, L21501.CrossRefGoogle Scholar
  16. Copland, L., Mortimer, C., White, A., Richer McCallum, M., & Mueller, D. (2017). Factors contributing to recent Arctic ice shelf losses. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 263–285). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_10.Google Scholar
  17. Crary, A. P., Kulp, J. L., & Marshall, E. W. (1955). Evidences of climatic change from ice island studies. Science, 122, 1171–1173.CrossRefGoogle Scholar
  18. de Mora, S. J., Whitehead, R. F., & Gregory, M. (1994). The chemical composition of glacial melt water ponds on the McMurdo Ice Shelf, Antarctica. Antarctic Science, 6, 17–27.CrossRefGoogle Scholar
  19. Doran, P. T., Wharton Jr., R. A., Lyons, J. B., Des Marais, D. J., & Andersen, D. T. (2000). Sedimentology and geochemistry of a perennially ice-covered epishelf lake in Bunger Hills Oasis, East Antarctica. Antarctic Science, 11, 131–140.Google Scholar
  20. Edwards, A., Douglas, B., Anesio, A. M., Rassner, S. M., Irvine-Flynn, T. D. L., Sattler, B., & Griffith, F. W. (2013). A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecology, 6(2), 168–176.CrossRefGoogle Scholar
  21. Ehling-Schulz, M., & Scherer, S. (1999). UV protection in cyanobacteria. European Journal of Phycology, 34, 329–338.CrossRefGoogle Scholar
  22. Friedmann, E. I. (1986). The Antarctic cold desert and the search for traces of life on Mars. Advances in Space Research, 6, 265–268.CrossRefGoogle Scholar
  23. Fritsen, C. H., & Priscu, J. C. (1998). Cyanobacterial assemblages in permanent ice covers on Antarctic lakes: Distribution, growth rate, and temperature response of photosynthesis. Journal of Phycology, 34, 587–597.CrossRefGoogle Scholar
  24. Garcia-Pichel, F., & Castenholz, R. W. (1991). Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology, 27, 395–409.CrossRefGoogle Scholar
  25. Gibson, J. A. E., & Andersen, D. T. (2002). Physical structure of epishelf lakes of the southern Bunger Hills, East Antarctica. Antarctic Science, 14, 253–261.CrossRefGoogle Scholar
  26. Harding, T., Jungblut, A. D., Lovejoy, C., & Vincent, W. F. (2011). Microbes in high Arctic snow and implications for the cold biosphere. Applied and Environmental Microbiology, 77, 3234–3243.CrossRefGoogle Scholar
  27. Hawes, I., Smith, R., Howard-Williams, C., & Schwarz, A. M. (1999). Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarctic Science, 11, 198–208.CrossRefGoogle Scholar
  28. Hawes, I., Howard-Williams, C., & Fountain, A. G. (2008). Ice-based freshwater ecosystems. In W. F. Vincent & J. Laybourn-Parry (Eds.), Polar lakes and rivers – limnology of Arctic and Antarctic aquatic ecosystems (p. 103–118). Oxford: Oxford University Press.CrossRefGoogle Scholar
  29. Heywood, R. B. (1977). A limnological survey of the ablation point area, Alexander Island, Antarctica. Philosophical Transactions of the Royal Society B: Biological Sciences, 279, 39–54.CrossRefGoogle Scholar
  30. Hodgson, D., Gibson, J., & Doran, P. T. (2004a). Antarctic paleolimnology. In R. Pienitz, M. S. V. Douglas, & J. P. Smol (Eds.), Long-term environmental change in Arctic and Antarctic lakes (p. 419–474). Dordrecht: Springer.CrossRefGoogle Scholar
  31. Hodgson, D., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P., Taton, A., Squier, A., & Keely, B. (2004b). Environmental factors influencing the pigment composition of in situ benthic microbial communities in East Antarctic lakes. Aquatic Microbial Ecology, 37, 247–263.CrossRefGoogle Scholar
  32. Hoffman, P. F. (2016). Cryoconite pans on snowball earth: Supraglacial oases for Cryogenian eukaryotes? Geobiology, 14, 531–542.CrossRefGoogle Scholar
  33. Holdsworth, G. (1987). The surface waveforms on the Ellesmere Island ice shelves and ice islands. In Workshop on Extreme Ice Features, Banff, Alberta, November 3–5, 1986, National Research Council of Canada (p. 385–403).Google Scholar
  34. Howard-Williams, C., Pridmore, R. D., Broady, P. A., & Vincent, W. F. (1990). Environmental and biological variability in the McMurdo Ice Shelf ecosystem. In K. R. Kerry & G. Hempel (Eds.), Antarctic ecosystems: Ecological change and conservation (p. 23–31). Berlin: Springer.CrossRefGoogle Scholar
  35. Jeffries, M. O. (1992). Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics. Reviews of Geophysics, 30, 245–267.CrossRefGoogle Scholar
  36. Jeffries, M. O. (2017). The Ellesmere ice shelves, Nunavut, Canada. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 23–54). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_2.Google Scholar
  37. Jungblut, A., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D., Burns, B., & Neilan, B. (2005). Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology, 7, 519–529.CrossRefGoogle Scholar
  38. Jungblut, A., Lovejoy, C., & Vincent, W. F. (2010). Global distribution of cyanobacterial ecotypes in the cold biosphere. The ISME Journal, 4, 191–202.CrossRefGoogle Scholar
  39. Jungblut, A. D., Vincent, W. F., & Lovejoy, C. (2012). Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbiology Ecology, 82, 416–428.CrossRefGoogle Scholar
  40. Keys J. E. (1977). Water regime of ice-covered fiords and lakes. Ph.D. Thesis, Marine Sciences Centre, McGill University, Montreal, pp. 75Google Scholar
  41. Keys J. E. (1978). Water regime of Disraeli Fiord, Ellesmere Island Report Number 792. Ottawa: Defence Research Establishment Ottawa, pp. 58Google Scholar
  42. Laybourn-Parry, J. (2002). Survival mechanisms in Antarctica lakes. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 863–869.CrossRefGoogle Scholar
  43. Laybourn-Parry, J., Madan, N. J., Marshall, W. A., Marchant, H. J., & Wright, S. W. (2006). Carbon dynamics in an ultra-oligotrophic epishelf lake (Beaver Lake, Antarctica) in summer. Freshwater Biology, 51, 1116–1130.CrossRefGoogle Scholar
  44. Lionard, M., Péquin, B., Lovejoy, C., & Vincent, W. F. (2012). Benthic cyanobacterial mats in the high Arctic: Multi-layer structure and fluorescence responses to osmotic stress. Frontiers in Aquatic Microbiology, 3, 140. doi: 10.3389/fmicb.2012.00140.Google Scholar
  45. Ludlam, S. D. (1996). Stratification patterns in Taconite Inlet, Ellesmere Island, N.W.T. Journal of Paleolimnology, 16, 205–215.Google Scholar
  46. Mader, H. M., Pettitt, M., Wadham, J. L., Wolff, E., & Parkes, J. (2006). Subsurface ice as a microbial habitat. Geology, 34, 169–172.CrossRefGoogle Scholar
  47. McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 38–48.CrossRefGoogle Scholar
  48. Miteva, V. I., Sheridan, P. P., & Brenchley, J. E. (2004). Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Applied and Environmental Microbiology, 70, 202–213.CrossRefGoogle Scholar
  49. Mountfort, D., Kaspar, H. F., Downes, M. T., & Asher, R. (1999). Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica. Applied and Environmental Microbiology, 65, 5493–5499.Google Scholar
  50. Mountfort, D., Kaspar, H., Asher, R., & Sutherland, D. (2003). Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica. Applied and Environmental Microbiology, 69, 583–592.CrossRefGoogle Scholar
  51. Mueller, D. R., & Vincent, W. F. (2006). Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf. Hydrological Processes, 20, 857–876.CrossRefGoogle Scholar
  52. Mueller, D. R., Vincent, W. F., Pollard, W. H., & Fritsen, C. H. (2001). Glacial cryoconite ecosystems: A bipolar comparison of algal communities and habitats. Nova Hedwigia, Beiheft, 123, 173–197.Google Scholar
  53. Mueller, D. R., Jeffries, M. O., & Vincent, W. F. (2003a). Ice shelf break-up and ecosystem loss in the Canadian High Arctic. Eos, Transactions of the American Geophysical Union, 84, 548,552.CrossRefGoogle Scholar
  54. Mueller, D. R., Vincent, W. F., & Jeffries, M. O. (2003b). Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophysical Research Letters, 30, 2031.CrossRefGoogle Scholar
  55. Mueller, D. R., Vincent, W. F., Bonilla, S., & Laurion, I. (2005). Extremotrophs, extremophiles and broadband pigmentation strategies in a high Arctic ice shelf ecosystem. FEMS Microbiology Ecology, 53, 73–87.CrossRefGoogle Scholar
  56. Mueller, D. R., Vincent, W. F., & Jeffries, M. O. (2006). Environmental gradients, fragmented habitats and microbiota of a northern ice shelf cryoecosystem, Ellesmere Island, Canada. Arctic, Antarctic, and Alpine Research, 38, 593–607.CrossRefGoogle Scholar
  57. Mueller, D. R., Copland, L., Hamilton, A., & Stern, D. R. (2008). Examining Arctic ice shelves prior to 2008 breakup. Eos, Transactions of the American Geophysical Union, 89, 502–503.CrossRefGoogle Scholar
  58. Müller, T., Bleiß, W., Martin, C.-D., Rogaschewski, S., & Fuhr, G. (1998). Snow algae from Northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biology, 20, 14–23.CrossRefGoogle Scholar
  59. Narod, B. B., Clarke, G. K. C., & Prager, B. T. (1988). Airborne UHF radar sounding of glaciers and ice shelves, northern Ellesmere Island, Arctic Canada. Canadian Journal of Earth Sciences, 25, 95–105.CrossRefGoogle Scholar
  60. Oren, A. (2000). Salt and brines. In B. A. Whitton & M. Potts (Eds.), The ecology of cyanobacteria: Their diversity in time and space (p. 281–306). Dordrecht: Kluwer Academic Publishers.Google Scholar
  61. Pearl, H. W., & Pinckney, J. L. (1996). A mini-review of microbial consortia: Their role in aquatic production and biogeochemical cycling. Microbial Ecology, 31, 225–247.Google Scholar
  62. Pointing, S. B., Büdel, B., Convey, P., Gillman, L., Körner, C., Leuzinger, S., & Vincent, W. F. (2015). Biogeography of photoautotrophs in the high polar biome. Frontiers in Plant Science, 6, 692. doi: 10.3389/fpls.2015.00692.CrossRefGoogle Scholar
  63. Price, P. B. (2007). Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiology Ecology, 59, 217–231.CrossRefGoogle Scholar
  64. Price, P. B., & Sowers, T. (2004). Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences of the United States of America, 101, 4631–4636.Google Scholar
  65. Priscu, J. C., & Christner, B. C. (2004). Earth’s icy biosphere. In A. Bull (Ed.), Microbial diversity and bioprospecting (p. 130–145). Washington, DC: American Society for Microbiology.CrossRefGoogle Scholar
  66. Quesada, A., & Vincent, W. F. (1997). Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. European Journal of Phycology, 32, 335–342.CrossRefGoogle Scholar
  67. Quesada, A., Vincent, W. F., & Lean, D. R. S. (1999). Community and pigment structure of Arctic cyanobacterial assemblages: The occurrence and distribution of UV-absorbing compounds. FEMS Microbiology Ecology, 28, 315–323.CrossRefGoogle Scholar
  68. Rivkina, E. M., Friedmann, E. I., McKay, C. P., & Gilichinsky, D. A. (2000). Metabolic activity of permafrost bacteria below the freezing point. Applied and Environmental Microbiology, 66, 3230–3233.CrossRefGoogle Scholar
  69. Roos, J. C., & Vincent, W. F. (1998). Temperature dependence of UV radiation effects on Antarctic cyanobacteria. Journal of Phycology, 34, 118–125.CrossRefGoogle Scholar
  70. Schopf, J. W., & Walter, M. R. (1982). Origin and early evolution of cyanobacteria: The geological evidence. In G. Carr & B. A. Whitton (Eds.), The biology of cyanobacteria (p. 543–564). Oxford: Blackwell Scientific Publisher.Google Scholar
  71. Schraeder, R. L. (1968). Ablation of Ice Island ARLIS II, 1961. M.Sc. Thesis, Department of Geology, University of Alaska, College, Fairbanks, pp. 59Google Scholar
  72. Sjöling, S., & Cowan, D. A. (2003). High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles, 7, 275–282.CrossRefGoogle Scholar
  73. Smith, D. D. (1961). Sequential development of surface morphology on Fletcher’s Ice Island, T-3. In G. O. Raasch (Ed.), Geology of the Arctic (p. 896–914). Toronto: University of Toronto Press.Google Scholar
  74. Smith, J. A., Hodgson, D., Bentley, M. J., Verleyen, E., Leng, M. J., & Roberts, S. J. (2006). Limnology of two Antarctic epishelf lakes and their potential to record periods of ice shelf loss. Journal of Paleolimnology, 35, 373–394.CrossRefGoogle Scholar
  75. Squier, A. H., Airs, R. L., Hodgson, D. A., & Keely, B. J. (2004). Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of the ultraviolet screening pigment scytonemin: Characteristic fragmentations. Rapid Communications in Mass Spectrometry, 18, 2934–2938.CrossRefGoogle Scholar
  76. Stal, L. (2000). Cyanobacterial mats and stromatolites. In B. A. Whitton & M. Potts (Eds.), The ecology of cyanobacteria: Their diversity in time and space (p. 61–120). Dordrecht: Kluwer Academic Press.Google Scholar
  77. Stal, L. (2003). Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiology Journal, 20, 463–478.CrossRefGoogle Scholar
  78. Tang, E. P. Y., Tremblay, R., & Vincent, W. F. (1997). Cyanobacteria dominance of polar freshwater ecosystems: Are high-latitude mat-formers adapted to low temperature? Journal of Phycology, 33, 171–181.CrossRefGoogle Scholar
  79. Thibault, D., Head, E. J. H., & Wheeler, P. A. (1999). Mesozooplankton in the Arctic Ocean in summer. Deep Sea Research: Part I - Oceanographic Research Papers, 46, 1391–1415.CrossRefGoogle Scholar
  80. Van Hove, P., Swadling, K., Gibson, J. A. E., Belzile, C., & Vincent, W. F. (2001). Farthest north lake and fjord populations of calanoid copepods Limnocalanus macrurus and Drepanopus bungei in the Canadian High Arctic. Polar Biology, 24, 303–307.CrossRefGoogle Scholar
  81. Van Hove, P., Belzile, C., Gibson, J. A. E., & Vincent, W. F. (2006). Coupled landscape-lake evolution in the coastal High Arctic. Canadian Journal of Earth Sciences, 43, 533–546.CrossRefGoogle Scholar
  82. Van Hove, P., Vincent, W. F., Galand, P. E., & Wilmotte, A. (2008). Abundance and diversity of picocyanobacteria in High Arctic lakes and fjords. Algological Studies, 126, 209–227.CrossRefGoogle Scholar
  83. Van Trappen, S., Mergaert, J., Van Eygen, S., Dawyndt, P., Cnockaert, M. C., & Swings, J. (2002). Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Systematic and Applied Microbiology, 25, 603–610.CrossRefGoogle Scholar
  84. Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F., & Corbeil, J. (2010). Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnology and Oceanography, 55, 1901–1911.CrossRefGoogle Scholar
  85. Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F., & Corbeil, J. (2012). Metagenomic analysis of stress genes in microbial mat communities from extreme Arctic and Antarctic environments. Applied and Environmental Microbiology, 78, 549–559.CrossRefGoogle Scholar
  86. Veillette, J., Mueller, D. R., Antoniades, D., & Vincent, W. F. (2008). Arctic epishelf lakes as sentinel ecosystems: Past, present and future. Journal of Geophysical Research - Biogeosciences, 113, G04014.CrossRefGoogle Scholar
  87. Veillette, J., Lovejoy, C., Potvin, M., Harding, T., Jungblut, A. D., Antoniades, D., Chénard, C., Suttle, C. A., & Vincent, W. F. (2011). Milne Fiord epishelf lake: A coastal Arctic ecosystem vulnerable to climate change. Ecoscience, 18, 304–316.CrossRefGoogle Scholar
  88. Vézina, S., & Vincent, W. F. (1997). Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada (73°N, 80°W). Polar Biology, 17, 523–534.CrossRefGoogle Scholar
  89. Villeneuve, V., Vincent, W. F., & Komárek, J. (2001). Community structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake. Nova Hedwigia, Beiheft, 123, 199–224.Google Scholar
  90. Vincent, W. F. (1988). Microbial ecosystems of Antarctica (304 pp). Cambridge: Cambridge University Press.Google Scholar
  91. Vincent, W. F. (2000a). Evolutionary origins of Antarctic microbiota: Invasion, detection and endemism. Antarctic Science, 12, 374–386.CrossRefGoogle Scholar
  92. Vincent, W. F. (2000b). Cyanobacterial dominance in the polar regions. In B. A. Whitton & M. Potts (Eds.), The ecology of cyanobacteria: Their diversity in time and space (p. 321–340). Dordrecht: Kluwer Academic Press.Google Scholar
  93. Vincent, W. F. (2007). Cold tolerance in cyanobacteria and life in the cryosphere. In J. Seckbach (Ed.), Algae and cyanobacteria in extreme environments (p. 287–301). Heidelberg: Springer.CrossRefGoogle Scholar
  94. Vincent, W. F. (2009). Cyanobacteria. In G. E. Likens (Ed.), Encyclopedia of inland waters (Vol. 3, p. 55–60). Oxford: Elsevier.Google Scholar
  95. Vincent, W. F., & Howard-Williams, C. (1989). Microbial communities in southern Victoria Land streams (Antarctica). 2. The effects of low temperature. Hydrobiologia, 172, 39–49.CrossRefGoogle Scholar
  96. Vincent, W. F., & Howard-Williams, C. (2000). Life on snowball earth. Science, 287, 2421.CrossRefGoogle Scholar
  97. Vincent, W. F., & Neale, P. J. (2000). Mechanisms of UV damage to aquatic organisms. In S. J. de Mora, S. Demers, & M. Vernet (Eds.), The effects of UV radiation in the marine environment (p. 149–176). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  98. Vincent, W. F., Castenholz, R. W., Downes, M. T., & Howard-Williams, C. (1993). Antarctic cyanobacteria: Light, nutrients, and photosynthesis in the microbial mat environment. Journal of Phycology, 29, 745–755.CrossRefGoogle Scholar
  99. Vincent, W. F., Gibson, J. A., Pienitz, R., Villeneuve, V., Broady, P. A., Hamilton, P. B., & Howard-Williams, C. (2000). Ice shelf microbial ecosystems in the high Arctic and implications for life on snowball earth. Naturwissenschaften, 87, 137–141.CrossRefGoogle Scholar
  100. Vincent, W. F., Gibson, J. A. E., & Jeffries, M. O. (2001). Ice shelf collapse, climate change, and habitat loss in the Canadian High Arctic. Polar Record, 37, 133–142.CrossRefGoogle Scholar
  101. Vincent, W. F., Mueller, D. R., & Bonilla, S. (2004). Ecosystems on ice: The microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology, 48, 103–112.CrossRefGoogle Scholar
  102. Vincent, W. F., Whyte, L. G., Lovejoy, C., Greer, C. W., Laurion, I., Suttle, C. A., Corbeil, J., & Mueller, D. R. (2009). Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year. Polar Science, 3, 171–180.CrossRefGoogle Scholar
  103. Webster-Brown, J. G., Hawes, I., Jungblut, A. D., Wood, S. A., & Christenson, H. K. (2015). The effects of entombment on water chemistry and bacterial assemblages in closed cryoconite holes on Antarctic glaciers. FEMS Microbiology Ecology, 91(12). doi: 10.1093/femsec/fiv144.
  104. Wheeler, P. A., Gosselin, N., Sherr, E., Thibault, D., Kirchman, D. L., Benner, R., & Whiteledge, T. E. (1996). Active cycling of organic carbon in the Central Arctic Ocean. Nature, 380, 697–699.CrossRefGoogle Scholar
  105. White, A., Mueller, D., & Copland, L. (2015). Reconstructing hydrographic change in Petersen Bay, Ellesmere Island, Canada, inferred from SAR imagery. Remote Sensing of Environment, 165, 1–13.CrossRefGoogle Scholar
  106. Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J., Telling, J., Fagan, D., MacFarlane, J., Stibal, M., Barker, G., Bellas, C., Hodson, A., Tranter, M., Wadham, J., & Roberts, N. W. (2012). Photophysiology and albedo-changing potential of the ice algal communities on the surface of the Greenland Ice Sheet. The ISME Journal, 6, 2302–2313.CrossRefGoogle Scholar
  107. Zakhia, F., Jungblut, A. D., Taton, A., Vincent, W. F., & Wilmotte, A. (2008). Cyanobacteria in cold environments. In R. Margesin, F. Schinner, J. C. Marx, & C. Gerday (Eds.), Psychrophiles: From biodiversity to biotechnology (p. 121–135). Heidelberg: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Anne D. Jungblut
    • 1
    • 2
    Email author
  • Derek Mueller
    • 3
  • Warwick F. Vincent
    • 4
  1. 1.Centre d’Études Nordiques (CEN), Institut de biologie intégrative et des systèmes (IBIS) and Département de BiologieLaval UniversityQuebec CityCanada
  2. 2.Life Sciences DepartmentThe Natural History MuseumLondonUK
  3. 3.Department of Geography and Environmental StudiesCarleton UniversityOttawaCanada
  4. 4.Centre d’Études Nordiques (CEN), Takuvik Joint International Laboratory and Département de BiologieLaval UniversityQuebec CityCanada

Personalised recommendations