Advertisement

Eurasian Arctic Ice Shelves and Tidewater Ice Margins

  • Julian A. DowdeswellEmail author
Chapter
Part of the Springer Polar Sciences book series (SPPS)

Abstract

Despite the presence of about 4000 km of marine-terminating glaciers and ice caps in the Eurasian Arctic, there are few floating ice shelves. Neither are there extensive areas of multi-year shorefast sea ice which might thicken into composite ice shelves themselves. The archipelagos of Severnaya Zemlya and Franz Josef Land contain some ice shelves in addition to grounded tidewater ice fronts. The largest Eurasian Arctic ice shelf was the Matusevich Ice Shelf, Severnaya Zemlya, at about 240 km2 with a drainage basin of about 1100 km2; this ice shelf largely broke up in 2012. In Franz Josef Land, a number of ice caps have smooth and very low surface gradient seaward margins, covering over 300 km2 or 2% of the total area of the ice caps in the archipelago. These low-gradient areas are located mainly in relatively protected embayments and produce large tabular icebergs of up to several kilometres in length. Whether individual areas are floating in hydrostatic equilibrium or are simply close to buoyancy, they provide the major modern source of tabular icebergs to the Barents Sea. Svalbard has about 860 km of coastal ice cliffs, but almost none of the ice margin appears to be afloat. There may be short periods, during the active phase of the surge cycle, where marine margins become afloat. Neither is there evidence that the margins of the marine-terminating glaciers on Novaya Zemlya are floating. Twenty-five to fifty percent of the bed of the three largest ice caps in the Eurasian Arctic lies below sea level. Thus, in a warming Arctic, the ice margin would eventually retreat onto land, curtailing mass loss by iceberg production and providing a break on rapid ice-cap disintegration through calving.

Keywords

Ice shelves Tidewater glaciers Eurasian Arctic Icebergs Sea ice 

Notes

Acknowledgments

Grants from the John Ellerman Foundation and the Arctic Environmental Program of ConocoPhillips supported parts of this work. Airborne radar campaigns to measure ice thickness in the Eurasian Arctic archipelagos were funded by a series of grants from the UK Natural Environment Research Council. Toby Benham, Evelyn Dowdeswell, Andrey Glazovsky, Jon Ove Hagen, Yuri Macheret and Martin Sharp are thanked for their helpful comments on the paper.

References

  1. Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., & Motyka, R. J. (2010). Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. Journal of Geophysical Research, 115. doi: 10.1029/2009JF001405.
  2. Anderson, J. B. (1999). Antarctic marine geology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Blaszczyk, M., Jania, J. A., & Hagen, J. O. (2009). Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes. Polish Polar Research, 30, 85–141.Google Scholar
  4. Carr, J. R., Stokes, C., & Vieli, A. (2014). Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions. Journal of Glaciology, 60, 155–170.CrossRefGoogle Scholar
  5. Christoffersen, P., Mugford, R., Heywood, K. J., Joughin, I., Dowdeswell, J. A., Syvitski, J. P. M., Luckman, A., & Benham, T. J. (2011). Warming of waters in an East Greenland fjord prior to glacier retreat: Mechanisms and connection to large-scale atmospheric conditions. The Cryosphere, 5, 701–714.CrossRefGoogle Scholar
  6. Dowdeswell, J. A. (1986). Drainage-basin characteristics of Nordaustlandet ice caps, Svalbard. Journal of Glaciology, 32, 31–38.CrossRefGoogle Scholar
  7. Dowdeswell, J. A. (1989). On the nature of Svalbard icebergs. Journal of Glaciology, 35, 224–234.Google Scholar
  8. Dowdeswell, J. A. (1995). Glaciers in the high Arctic and recent environmental change. Philosophical Transactions of the Royal Society, Series A, 352, 321–334.CrossRefGoogle Scholar
  9. Dowdeswell, J. A., & Bamber, J. L. (1995). On the glaciology of Edgeøya and Barentsøya, Svalbard. Polar Research, 14, 105–122.Google Scholar
  10. Dowdeswell, J. A., & Forsberg, C. F. (1992). The size and frequency of icebergs and bergy bits from tidewater glaciers in Kongsfjorden, north-west Spitsbergen. Polar Research, 11, 81–91.CrossRefGoogle Scholar
  11. Dowdeswell, J. A., & Hagen, J. O. (2004). Arctic glaciers and ice caps. In J. L. Bamber & A. J. Payne (Eds.), Mass balance of the cryosphere (p. 527–557). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Dowdeswell, J. A., & Williams, M. (1997). Surge-type glaciers in the Russian high Arctic identified from digital satellite imagery. Journal of Glaciology, 43, 489–494.CrossRefGoogle Scholar
  13. Dowdeswell, J. A., Gorman, M. R., Glazovsky, A. F., & Macheret, Y. Y. (1994). Evidence for floating ice shelves in Franz Josef Land, Russian High Arctic. Arctic and Alpine Research, 26, 86–92.CrossRefGoogle Scholar
  14. Dowdeswell, J. A., Whittington, R. J., Jennings, A. E., Andrews, J. T., Mackensen, A., & Marienfeld, P. (2000). An origin for laminated glacimarine sediments through sea-ice build-up and suppressed iceberg rafting. Sedimentology, 47, 557–576.CrossRefGoogle Scholar
  15. Dowdeswell, J. A., Bassford, R. P., Gorman, M. R., Williams, M., Glazovsky, A. F., Macheret, Y. Y., Shepherd, A. P., Vasilenko, Y. V., Savatyuguin, L. M., Hubberten, H.-W., & Miller, H. (2002). Form and flow of the Academy of Sciences ice cap, Severnaya Zemlya, Russian High Arctic. Journal of Geophysical Research, 107. doi: 10.1029/2000/JB000129.
  16. Dowdeswell, J. A., Benham, T. J., Strozzi, T., & Hagen, J. O. (2008). Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard. Journal of Geophysical Research, 113, F03022. doi: 10.1029/2007JF000905.CrossRefGoogle Scholar
  17. Dowdeswell, J. A., Dowdeswell, E. K., Williams, M., & Glazovsky, A. F. (2010). The glaciology of the Russian High Arctic from Landsat imagery. U.S. Geological Survey Professional Paper, 1386-F, 94–125.Google Scholar
  18. Enderlin, E. M., & Howat, I. M. (2013). Submarine melt rate estimates for floating termini of Greenland outlet glaciers (2000–2010). Annals of Glaciology, 59, 67–75.CrossRefGoogle Scholar
  19. Fox, A. J., & Vaughan, D. G. (2005). The retreat of Jones Ice Shelf, Antarctic Peninsula. Journal of Glaciology, 51, 555–560.CrossRefGoogle Scholar
  20. Govorukha, L. S. (1968). The present state of ice cap islands in the Soviet Union. Polar Geography and Geology, 12, 312–316.CrossRefGoogle Scholar
  21. Govorukha, L. S., Semenov, I. V., Popova, N. M., Shamont’yeva L. A., & Bazheva, V. Ya. (1980) Chast’ 1. Severnaya Zemlya. In Katalog lednikov SSSR. Tom 16. Leningrad, Gidrometeoizdat, p. 5–49.Google Scholar
  22. Grant, K. L., Stokes, C. R., & Evans, I. S. (2009). Identification and characteristics of surge-type glaciers on Novaya Zemlya, Russian Arctic. Journal of Glaciology, 55, 960–972.CrossRefGoogle Scholar
  23. Grosswald, M., Krenke, A. N., Vinogradov, O. N., Markin, V. A., Psariova, T. V., Razumeiko, N. G., & Sukhodrovsky, V. L. (1973). Glaciers of Franz Josef Land: Results of research under the programme of the International Geophysical Year. Moscow: Nauka.Google Scholar
  24. Hagen, J. O., Liestøl, O., Roland, E., & Jørgensen, T. (1993). Glacier atlas of Svalbard and Jan Mayen. Oslo: Norsk Polarinstitutt.Google Scholar
  25. Hagen, J. O., & Reeh, N. (2004). In situ measurement techniques: Land ice. In J. L. Bamber & A. J. Payne (Eds.), Mass balance of the cryosphere (p. 12–42). Cambridge: Cambridge University Press.Google Scholar
  26. Hambrey, M. J. (1994). Glacial environments. London: UCL Press.Google Scholar
  27. Hodgkins, R., & Dowdeswell, J. A. (1994). Tectonic processes in Svalbard tidewater glacier surges: Evidence from structural glaciology. Journal of Glaciology, 40, 553–560.CrossRefGoogle Scholar
  28. Holland, D. M., Thomas, R. H., de Young, N., Ribergaard, M. H., & Lyberth, B. (2008). Acceleration of Jakoshavn Isbrae triggered by warm subsurface ocean waters. Nature Geoscience, 1, 659–664.CrossRefGoogle Scholar
  29. IPCC. (2013). Summary for policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.Google Scholar
  30. Jeffries, M. O. (2017). The Ellesmere ice shelves, Nunavut, Canada. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 23–54). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_2.Google Scholar
  31. Kubyshkin, N. V., Buzin, I. V., Glazovsky, A. F., & Skutin, A. A. (2006). Determination of the area of generation of big icebergs in the Barents Sea – temperature distribution analysis. In Proceedings of the Sixteenth International Offshore and Polar Engineering Conference, San Francisco, May 28-June 2, 2006 (p. 634–638).Google Scholar
  32. Liestøl, O. (1973). Glaciological work in 1971. Norsk Polarinstitutt Årbok 1971. Oslo.Google Scholar
  33. Melkonian, A. K., Willis, M. J., Pritchard, M. E., & Stewart, A. J. (2016). Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment, 174, 244–257.CrossRefGoogle Scholar
  34. Moholdt, G., Hagen, J. O., Eiken, T., & Schuler, T. V. (2010). Geometric changes and mass balance of the Austfonna ice cap, Svalbard. The Cryosphere, 4, 21–34.CrossRefGoogle Scholar
  35. Moholdt, G., Wouters, B., & Gardner, A. S. (2012a). Recent mass changes of glaciers in the Russian High Arctic. Geophysical Research Letters, 39. doi: 10.1029/2012GL051466.
  36. Moholdt, G., Heid, T., Benham, T., & Dowdeswell, J. A. (2012b). Dynamic instability of marine glacier basins of Academy of Sciences Ice Cap, Russian high Arctic. Annals of Glaciology, 53, 193–201.CrossRefGoogle Scholar
  37. Nick, F. M., Vieli, A., Howat, I. M., & Joughin, I. (2009). Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geoscience, 2, 110–114.CrossRefGoogle Scholar
  38. Reeh, N. (2017). Greenland ice shelves and ice tongues. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 75–106). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_4.Google Scholar
  39. Reeh, N., Mayer, C., Miller, H., Thomsen, H. H., & Weidick, A. (1999). Present and past climate control on fjord glaciations in Greenland: Implications for IRD-deposition in the sea. Geophysical Research Letters, 26, 1039–1042.CrossRefGoogle Scholar
  40. Rignot, E., & Kanagaratnam, P. (2006). Changes in velocity structure of the Greenland Ice Sheet. Science, 311, 986–990.CrossRefGoogle Scholar
  41. Rignot, E., Koppes, M., & Velicogna, I. (2010). Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geoscience, 3, 187–191.CrossRefGoogle Scholar
  42. Sharov, A. I. (2005). Studying changes of ice coasts in the European Arctic. Geo-Marine Letters, 25(2), 153–166.CrossRefGoogle Scholar
  43. Shumskiy, P. A. (1949). Modern glaciation of the Soviet Arctic. Trudy Arkticheskogo Instituta, 111, 11–39.Google Scholar
  44. Spizharskiy, T. N. (1936). Glaciation of Franz Josef land. Trudy Arkticheskogo Instituta, 36, 5–37.Google Scholar
  45. Verkulich, S. R., Krasanov, A. G., & Anisimov, M. A. (1992). The present state of, and trends displayed by, the glaciers of Bennett Island in the past 40 years. Polar Geography and Geology, 16, 51–57.CrossRefGoogle Scholar
  46. Voevodin, V. A. (1972). Dimension of icebergs in the region of Franz-Josef Land and Spitsbergen. Problemy Arktiki i Antarktiki, 39, 138–140.Google Scholar
  47. Walsh, J. E. (2014). Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global and Planetary Change, 117, 52–63.CrossRefGoogle Scholar
  48. Weeks, W. F., & Campbell, W. J. (1973). Icebergs as a fresh water source: An appraisal. Journal of Glaciology, 12, 207–233.CrossRefGoogle Scholar
  49. Williams, M., & Dowdeswell, J. A. (2001). Historical fluctuations of the Matusevich Ice Shelf, Severnaya Zemlya, Russian High Arctic. Arctic, Antarctic and Alpine Research, 33, 211–222.CrossRefGoogle Scholar
  50. Willis, M. J., Melkonian, A. K., & Pritchard, M. E. (2015). Outlet glacier response to the 2012 collapse of the Matusevich Ice Shelf, Severnaya Zemlya, Russian Arctic. Journal of Geophysical Research, Earth Surface, 120, 2040–2055.CrossRefGoogle Scholar
  51. Zinger, Y. M., & Koryakin, V. S. (1965). Yest li schelfove lednike na Severnoy Zemle [are there ice shelves on Severnaya Zemlya?] (Russian). Materialy Glyatsiolicheskikh Issledovaniy, 11, 250–253.Google Scholar
  52. Zubin, G. K., Naumov, A. K., & Skutin, Y. A. (2005). Icebergs of the western sector of the Russian Arctic. In Proceedings of the 18th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC ‘05) (Vol. 2, p. 565–574, ISSN 2077-7841).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Scott Polar Research InstituteUniversity of CambridgeCambridgeUK

Personalised recommendations