Advertisement

Factors Contributing to Recent Arctic Ice Shelf Losses

  • Luke Copland
  • Colleen Mortimer
  • Adrienne White
  • Miriam Richer McCallum
  • Derek Mueller
Chapter
Part of the Springer Polar Sciences book series (SPPS)

Abstract

A review of historical literature and remote sensing imagery indicates that the ice shelves of northern Ellesmere Island have undergone losses during the 1930s/1940s to 1960s, and particularly since the start of the twenty-first century. These losses have occurred due to a variety of different mechanisms, some of which have resulted in long-term reductions in ice shelf thickness and stability (e.g., warming air temperatures, warming ocean temperatures, negative surface and basal mass balance, reductions in glacier inputs), while others have been more important in defining the exact time at which a pre-weakened ice shelf has undergone calving (e.g., presence of open water at ice shelf terminus, loss of adjacent multiyear landfast sea ice, reductions in nearby epishelf lake and fiord ice cover). While no single mechanism can be isolated, it is clear that they have all contributed to the marked recent losses of Arctic ice shelves, and that the outlook for the future survival of these features is poor.

Keywords

Ice shelf Calving Multiyear landfast sea ice Mass balance Climate warming Glaciers 

Notes

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, Ontario Research Fund, University of Ottawa, Polar Continental Shelf Program, ArcticNet, Northern Scientific Training Program, Canadian Space Agency, Alaska Satellite Facility and GLIMS project for support to complete this work. Twentieth Century Reanalysis V2 data kindly provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado. RADARSAT is an official mark of the Canadian Space Agency. We thank the Nunavut Research Institute and communities of Resolute Bay and Grise Fiord for permission to undertake fieldwork on northern Ellesmere Island. We thank Dave Burgess and an anonymous reviewer for comments on the manuscript and Nicole Couture for coordinating the peer review process.

References

  1. Ahlnès, K., & Sackinger, W. M. (1988). Offshore winds and pack ice movement episodes off Ellesmere Island. In W. M. Sackinger & M. O. Jeffries (Eds.), Port and ocean engineering under Arctic conditions. Volume I (p. 271–286). Fairbanks: Geophysical Institute, University of Alaska Fairbanks.Google Scholar
  2. AMAP. (2012). Arctic climate issues 2011: Changes in Arctic snow, water, ice and permafrost. Oslo: Arctic Monitoring and Assessment Programme.Google Scholar
  3. Berthier, E., Scambos, T. A., & Shuman, C. A. (2012). Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophysical Research Letters, 39, L13501. doi: 10.1029/2012GL051755.CrossRefGoogle Scholar
  4. Beszczynska-Möller, A., Fahrbach, E., Schauer, U., & Hansen, E. (2012). Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES Journal of Marine Science, 69, 852–863.CrossRefGoogle Scholar
  5. Box, J. E. (2013). Greenland Ice Sheet mass balance reconstruction. Part II: Surface mass balance (1840–2010). Journal of Climate, 26, 6974–6989. doi: 10.1175/JCLI-D-12-00518.1.CrossRefGoogle Scholar
  6. Braun, C. (2017). The surface mass balance of the Ward Hunt Ice Shelf and Ward Hunt Ice Rise, Ellesmere Island, Nunavut, Canada. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 149–183). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_6.Google Scholar
  7. Braun, C., Hardy, D. R., Bradley, R. S., & Sahanatien, V. (2004). Surface mass balance of the Ward Hunt Ice Rise and Ice Shelf, Ellesmere Island, Nunavut, Canada. Journal of Geophysical Research-Atmospheres, 109(D22110). doi: 10.1029/2004JD004560.
  8. Brunt, K. M., Okal, E. A., & MacAyeal, D. R. (2011). Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011. Journal of Glaciology, 57(205), 785–788.CrossRefGoogle Scholar
  9. Compo, G. P., et al. (2011). The Twentieth Century Reanalysis project. Quarterly Journal of the Royal Meteorological Society, 137, 1–28. doi: 10.1002/qj.776.CrossRefGoogle Scholar
  10. Copland, L. (2009). Review of recent changes in Canadian Ice Shelves. Report prepared for Canadian Ice Service, Environment Canada. Contract # KM149-08-2113, pp. 21.Google Scholar
  11. Copland, L., Mueller, D., & Weir, L. (2007). Rapid loss of the Ayles Ice Shelf, Ellesmere Island, Canada. Geophysical Research Letters, 34, L21501. doi: 10.1029/2007GL031809.CrossRefGoogle Scholar
  12. De Angelis, H., & Skvarca, P. (2003). Glacier surge after ice shelf collapse. Science, 299, 1560–1562.CrossRefGoogle Scholar
  13. England, J., Evans, D. A., & Lakeman, T. (2017). Holocene history of Arctic ice shelves. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 185–205). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_7.Google Scholar
  14. Fisher, D., Zheng, J., Burgess, D., Zdanowicz, C., Kinnard, C., Sharp, M., & Bourgeois, J. (2012). Recent melt rates of Canadian Arctic ice caps are the highest in four millennia. Global and Planetary Change, 84–85, 3–7. doi:10.1016/j.gloplacha.2011.06.005.Google Scholar
  15. Fuglem, M., & Jordaan, I. (2017). Risk analysis and hazards of ice islands. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 395–415). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_15.Google Scholar
  16. Gerdes, R., Karcher, M. J., Kauker, F., & Schauer, U. (2003). Causes and development of repeated Arctic Ocean warming events. Geophysical Research Letters, 30(19). doi: 10.1029/2003GL018080.
  17. Hamilton, A. (2016). Ice-Ocean interactions in Milne Fiord. PhD Thesis. Department of Civil Engineering, University of British Columbia, Vancouver, Canada.Google Scholar
  18. Hattersley-Smith, G. (1963). The Ward Hunt Ice Shelf: Recent changes of the ice front. Journal of Glaciology, 4(34), 415–424.CrossRefGoogle Scholar
  19. Hattersley-Smith, G. (1967). Note on ice shelves off the north coast of Ellesmere Island. The Arctic Circular, XVII, 13–14.Google Scholar
  20. Holdsworth, G. (1971). Calving from Ward-Hunt Ice Shelf, 1961–1962. Canadian Journal of Earth Sciences, 8, 299–305.CrossRefGoogle Scholar
  21. Howell, S. E. L., Wohlleben, T., Dabboor, M., Derksen, C., Komarov, A., & Pizzolato, L. (2013). Recent changes in the exchange of sea ice between the Arctic Ocean and the Canadian Arctic Archipelago. Journal of Geophysical Research Oceans, 118(7), 3595–3607.Google Scholar
  22. Jeffries, M. O. (1986). Ice island calvings and ice shelf changes, Milne Ice Shelf and Ayles Ice Shelf, Ellesmere Island, N.W.T. Arctic, 39, 15–19.CrossRefGoogle Scholar
  23. Jeffries, M. O. (1987). The growth, structure and disintegration of Arctic ice shelves. Polar Record, 23(147), 631–649.CrossRefGoogle Scholar
  24. Jeffries, M. O., & Serson, H. V. (1983). Recent changes at the front of Ward Hunt Ice Shelf, Ellesmere Island, N.W.T. Arctic, 36, 289–290.CrossRefGoogle Scholar
  25. Jungblut, A. D., Mueller, D., & Vincent, W. F. (2017). Arctic ice shelf ecosystems. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 227–260). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_9.Google Scholar
  26. Koenig, L. S., Greenaway, K. R., Dunbar, M., & Hattersley-Smith, G. (1952). Arctic ice islands. Arctic, 5, 67–103.Google Scholar
  27. Kwok, R., & Rothrock, D. A. (2009). Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36, L15501. doi: 10.1029/2009GL039035.CrossRefGoogle Scholar
  28. Lesins, G., Duck, T. J., & Drummond, J. R. (2010). Climate trends at Eureka in the Canadian High Arctic. Atmosphere-Ocean, 48(2), 59–80.CrossRefGoogle Scholar
  29. MacAyeal, D. R., Scambos, T. A., Hulbe, C. L., & Fahnestock, M. A. (2003). Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. Journal of Glaciology, 49, 22–36.CrossRefGoogle Scholar
  30. Maslanik, J., Stroeve, J., Fowler, C., & Emery, W. (2011). Distribution and trends in Arctic sea ice age through spring 2011. Geophysical Research Letters, 38, L13502. doi: 10.1029/2011GL047735.CrossRefGoogle Scholar
  31. Montgomery, M. R. (1952). Further notes on ice islands in the Canadian Arctic. Arctic, 5, 183–187.CrossRefGoogle Scholar
  32. Mortimer, C. (2011). Quantification of changes for the Milne Ice Shelf, Nunavut, Canada, 1950–2009. MSc thesis, Department of Geography, University of Ottawa, Ottawa, Canada.Google Scholar
  33. Mortimer, C., Copland, L., & Mueller, D. (2012). Volume and area changes of the Milne Ice Shelf, Ellesmere Island, Nunavut, Canada, since 1950. Journal of Geophysical Research – Earth Surface, 117, F04011. doi: 10.1029/2011JF002074.CrossRefGoogle Scholar
  34. Mueller, D. R., & Vincent, W. F. (2006). Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf. Hydrological Processes, 20, 857–876.CrossRefGoogle Scholar
  35. Mueller, D. R., Vincent, W. F., & Jeffries, M. O. (2003). Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophysical Research Letters, 30(20), 2031. doi: 10.1029/2003GL017931.CrossRefGoogle Scholar
  36. Mueller, D. R., Vincent, W. F., & Jeffries, M. O. (2006). Environmental gradients, fragmented habitats, and microbiota of a northern ice shelf cryoecosystem, Ellesmere Island, Canada. Arctic, Antarctic, and Alpine Research, 38(4), 593–607.CrossRefGoogle Scholar
  37. Mueller, D., Copland, L., Hamilton, A., & Stern, D. (2008). International Polar Year scientists and Canadian Rangers visit Arctic ice shelves just before massive loss in 2008. EOS, Transactions, American Geophysical Union, 89(49), 502–503.CrossRefGoogle Scholar
  38. Mueller, D., Van Hove, P., Antoniades, D., Jeffries, M. O., & Vincent, W. F. (2009). High Arctic lakes as sentinel ecosystems: Cascading regime shifts in climate, ice cover, and mixing. Limnology and Oceanography, 54(6, part 2), 2371–2385.CrossRefGoogle Scholar
  39. Mueller, D., Copland, L., & Jeffries, M. O. (2017). Changes in Canadian Arctic ice shelf extent since 1906. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 109–148). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_5.Google Scholar
  40. Nares, G. S. (1878). Narrative of a voyage to the polar sea during 1875-6 in H.M. ships ‘Alert’ and ‘Discovery’ (2 Vols.). London: Sampson Low, Marston, Searle and Rivington.Google Scholar
  41. Narod, B. B., Clarke, G. K. C., & Prager, B. T. (1988). Airborne UHF sounding of glaciers and ice shelves, northern Ellesmere Island, Arctic Canada. Canadian Journal of Earth Sciences, 25, 95–105. doi: 10.1139/e88-010.CrossRefGoogle Scholar
  42. Peary, R. E. (1907). Nearest the pole. London: Hutchinson.Google Scholar
  43. Polyakov, I. V., et al. (2010). Arctic Ocean warming contributes to reduced polar ice cap. Journal of Physical Oceanography, 40, 2743–2756.CrossRefGoogle Scholar
  44. Pope, S., Copland, L., & Mueller, D. (2012). Loss of multiyear landfast sea ice from Yelverton Bay, Ellesmere Island, Nunavut, Canada. Arctic, Antarctic, and Alpine Research, 44(2), 210–221.CrossRefGoogle Scholar
  45. Prager, B. T. (1983). Digital signal processing of UHF radio echo sounding data from northern Ellesmere Island. MSc thesis, Department of Geophysics and Astronomy, University of British Columbia, Vancouver, Canada.Google Scholar
  46. Reeh, N., Thomsen, H. H., Higgins, A. K., & Weidick, A. (2001). Sea ice and the stability of north and northeast Greenland floating glaciers. Annals of Glaciology, 33, 474–480.CrossRefGoogle Scholar
  47. Richer McCallum, M., Mueller, D. R., & Copland, L. (2014). An assessment of the causes of open water leads and changes in sea ice conditions along northern Ellesmere Island, Canada. International Symposium on Sea Ice in a Changing Environment, Hobart, Tasmania.Google Scholar
  48. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., & Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38, L05503. doi: 10.1029/2011GL046583.CrossRefGoogle Scholar
  49. Scambos, T. A., Bohlander, J. A., Shuman, C. A., & Skvarca, P. (2004). Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters, 31(L18402), 1–4.Google Scholar
  50. Schrama, E. J. O., & Wouters, B. (2011). Revisiting Greenland ice sheet mass loss observed by GRACE. Journal of Geophysical Research – Solid Earth, 116, B02407. doi: 10.1029/2009JB006847.Google Scholar
  51. Sharp, M., Burgess, D. O., Cogley, J. G., Ecclestone, M., Labine, C., & Wolken, G. J. (2011). Extreme melt on Canada’s Arctic ice caps in the 21st century. Geophysical Research Letters, 38, L11501. doi: 10.1029/2011GL047381.CrossRefGoogle Scholar
  52. Simmonds, I. (2015). Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Annals of Glaciology, 56(69), 18–28.CrossRefGoogle Scholar
  53. Thomson, L., & Copland, L. (2017). Multi-decadal reduction in glacier velocities and mechanisms driving deceleration at polythermal White Glacier, Arctic Canada. Journal of Glaciology. https://doi.org/10.1017/jog.2017.3.
  54. Van Wychen, W., & Copland, L. (2017). Ice island drift mechanisms in the Canadian High Arctic. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 287–316). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_11.Google Scholar
  55. Veillette, J., Mueller, D. R., Antoniades, D., & Vincent, W. F. (2008). Arctic epishelf lakes as sentinel ecosystems: Past, present and future. Journal of Geophysical Research – Biogeosciences, 113, G04014.CrossRefGoogle Scholar
  56. Veillette, J., Lovejoy, C., Potvin, M., Harding, T., Jungblut, A. D., Antoniades, D., Chénard, C., Suttle, C. A., & Vincent, W. F. (2011). Milne Fiord epishelf lake: A coastal Arctic ecosystem vulnerable to climate change. Écoscience, 18(3), 304–316.CrossRefGoogle Scholar
  57. Vincent, W. F., Gibson, J. A. E., & Jeffries, M. O. (2001). Ice-shelf collapse, climate change, and habitat loss in the Canadian high Arctic. Polar Record, 37, 133–142.CrossRefGoogle Scholar
  58. White, A. (2012). Dynamics and historical changes of the Petersen Ice Shelf and epishelf lake, Nunavut, Canada, since 1959. MSc thesis, Department of Geography, University of Ottawa, Ottawa, Canada.Google Scholar
  59. White, A., Copland, L., Mueller, D., & VanWychen, W. (2015a). Assessment of historical changes (1959–2012) and the causes of recent break-ups of the Petersen Ice Shelf, Nunavut, Canada. Annals of Glaciology, 56(69), 65–76. doi: 10.3189/2015AoG69A687.CrossRefGoogle Scholar
  60. White, A., Mueller, D., & Copland, L. (2015b). Reconstructing hydrographic change in Petersen Bay, Ellesmere Island, Canada, inferred from SAR imagery. Remote Sensing of Environment, 165, 1–13. doi: 10.1016/j.rse/2015.o4.017.CrossRefGoogle Scholar
  61. Williamson, S., Sharp, M., Dowdeswell, J., & Benham, T. (2008). Iceberg calving rates from northern Ellesmere Island ice caps, Canadian Arctic, 1999–2003. Journal of Glaciology, 54, 391–400.CrossRefGoogle Scholar
  62. Wohlleben, T., Tivy, A., Stroeve, J., Meier, W., Fetterer, F., Wang, J., & Assel, R. (2013). Computing and representing sea ice trends: Toward a community consensus. EOS, Transactions,, American Geophysical Union, 94(40), 352. doi: 10.1002/2013EO400006.CrossRefGoogle Scholar
  63. Yu, Y., Stern, H., Fowler, C., Fetterer, F., & Maslanik, J. (2014). Interannual variability of Arctic landfast ice between 1976 and 2007. Journal of Climate, 27, 227–243. doi: 10.1175/JCLI-D-13-00178.1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Luke Copland
    • 1
  • Colleen Mortimer
    • 2
  • Adrienne White
    • 1
  • Miriam Richer McCallum
    • 3
  • Derek Mueller
    • 3
  1. 1.Department of Geography, Environment and GeomaticsUniversity of OttawaOttawaCanada
  2. 2.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  3. 3.Department of Geography and Environmental StudiesCarleton UniversityOttawaCanada

Personalised recommendations