TRPC Channels and Neuron Development, Plasticity, and Activities

  • Yilin Tai
  • Yichang JiaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 976)


In this chapter, we mainly focus on the functions of TRPC channels in brain development, including neural progenitor proliferation, neurogenesis, neuron survival, axon guidance, dendritic morphology, synaptogenesis, and neural plasticity. We also notice emerging advances in understanding the functions of TRPC channels in periphery, especially their functions in sensation and nociception in dorsal root ganglion (DRG). Because TRPC channels are expressed in all major types of glial cells, which account for at least half of total cells in the brain, TRPC channels may act as modulators for glial functions as well. The future challenges for studying these channels could be (1) the detailed protein structures of these channels, (2) their cell type-specific functions, (3) requirement for their specific blockers or activators, and (4) change in the channel conformation in the brain.


TRPC channels Neuron Development Plasticity 



Dr. Yichang Jia acknowledges the funding support from “1000-talents Plan” for young researchers, the Chinese Central Government; from Peking-Tsinghua Joint Center for Life Sciences and IDG/McGovern Institute for Brain Research at Tsinghua; from National Science Foundation of China (31571097, 81371361); from ALS association (16-IIP-284); and from NIH Pathway to Independence Award (K99/R00, NS079476).


  1. 1.
    Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, Cowan M, Ghosh A (2004) Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303 (5655):197–202. doi: 10.1126/science.1089845303/5655/197 [pii]
  2. 2.
    Alessandri-Haber N, Dina OA, Chen X, Levine JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29(19):6217–6228. doi: 10.1523/jneurosci.0893-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic apine formation. J Neurosci 27(19):5179–5189. doi: 10.1523/jneurosci.5499-06.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541. doi: 10.1002/cne.21974 CrossRefPubMedGoogle Scholar
  5. 5.
    Barton ME, Shannon HE (2005) Behavioral and convulsant effects of the (S) enantiomer of the group I metabotropic glutamate receptor agonist 3,5-DHPG in mice. Neuropharmacology 48 (6):779–787. doi:S0028-3908(05)00035-3 [pii]10.1016/j.neuropharm.2005.01.017Google Scholar
  6. 6.
    Batchelor AM, Madge DJ, Garthwaite J (1994) Synaptic activation of metabotropic glutamate receptors in the parallel fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience 63 (4):911–915. doi:0306-4522(94)90558-4 [pii]Google Scholar
  7. 7.
    Becker EBE, Oliver PL, Glitsch MD, Banks GT, Achilli F, Hardy A, Nolan PM, Fisher EMC, Davies KE (2009) A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci U S A 106(16):6706–6711. doi: 10.1073/pnas.0810599106 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Berridge MJ (1998) Neuronal calcium signaling. Neuron 21(1):13–26CrossRefPubMedGoogle Scholar
  9. 9.
    Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2007) Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. Am J Phys Cell Phys 293 (3):C1103–C1111. doi:00249.2007 [pii]10.1152/ajpcell.00249.2007Google Scholar
  10. 10.
    Clapham DE (1995) Calcium signaling. Cell 80 (2):259–268. doi:0092-8674(95)90408-5 [pii]Google Scholar
  11. 11.
    Clelland CD, Choi M, Romberg C, Clemenson GD, Jr., Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325 (5937):210–213. doi: 10.1126/science.1173215325/5937/210 [pii]
  12. 12.
    Craig AM, Wyborski RJ, Banker G (1995) Preferential addition of newly synthesized membrane protein at axonal growth cones. Nature 375(6532):592–594. doi: 10.1038/375592a0 CrossRefPubMedGoogle Scholar
  13. 13.
    Dasari S, Abramowitz J, Birnbaumer L, Gulledge AT (2013) Do canonical transient receptor potential channels mediate cholinergic excitation of cortical pyramidal neurons? Neuroreport 24(10):550–554. doi: 10.1097/WNR.0b013e3283621344 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA (2009) Transient receptor potential canonical 5 channels activate Ca2+/Calmodulin Kinase Iγ to promote axon formation in hippocampal neurons. J Neurosci 29(31):9794–9808. doi: 10.1523/jneurosci.1544-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, Norris J (2000) Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31(2):347–354CrossRefPubMedGoogle Scholar
  16. 16.
    Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40(2):209–227CrossRefPubMedGoogle Scholar
  17. 17.
    Dhar M, Wayman GA, Zhu M, Lambert TJ, Davare MA, Appleyard SM (2014) Leptin-induced spine formation requires TrpC channels and the CaM Kinase Cascade in the hippocampus. J Neurosci 34(30):10022–10033. doi: 10.1523/jneurosci.2868-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294 (5541):333–339. doi: 10.1126/science.1063395294/5541/333 [pii]
  19. 19.
    Du W, Huang J, Yao H, Zhou K, Duan B, Wang Y (2010) Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J Clin Invest 120(10):3480–3492. doi: 10.1172/jci43165 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dulac C, Axel R (1998) Expression of candidate pheromone receptor genes in vomeronasal neurons. Chem Senses 23(4):467–475CrossRefPubMedGoogle Scholar
  21. 21.
    Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420 (6912):173–178. doi: 10.1038/nature01171nature01171 [pii]
  22. 22.
    Elg S, Marmigere F, Mattsson JP, Ernfors P (2007) Cellular subtype distribution and developmental regulation of TRPC channel members in the mouse dorsal root ganglion. J Comp Neurol 503(1):35–46. doi: 10.1002/cne.21351 CrossRefPubMedGoogle Scholar
  23. 23.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317. doi: 10.1038/3305 CrossRefPubMedGoogle Scholar
  24. 24.
    Fiorio Pla A, Maric D, Brazer SC, Giacobini P, Liu X, Chang YH, Ambudkar IS, Barker JL (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25 (10):2687–2701. doi:25/10/2687 [pii]10.1523/JNEUROSCI.0951-04.2005Google Scholar
  25. 25.
    Fortin DA, Srivastava T, Dwarakanath D, Pierre P, Nygaard S, Derkach VA, Soderling TR (2012) Brain-derived neurotrophic factor activation of CaM-kinase kinase via transient receptor potential canonical channels induces the translation and synaptic incorporation of GluA1-containing calcium-permeable AMPA receptors. J Neurosci 32 (24):8127–8137. doi: 10.1523/JNEUROSCI.6034-11.201232/24/8127 [pii]
  26. 26.
    Fusco FR, Martorana A, Giampà C, March ZD, Vacca F, Tozzi A, Longone P, Piccirilli S, Paolucci S, Sancesario G, Mercuri NB, Bernardi G (2004) Cellular localization of TRPC3 channel in rat brain: preferential distribution to oligodendrocytes. Neurosci Lett 365(2):137–142. doi:
  27. 27.
    Gao W, Dunbar RL, Chen G, Reinert KC, Oberdick J, Ebner TJ (2003) Optical imaging of long-term depression in the mouse cerebellar cortex in vivo. J Neurosci 23 (5):1859–1866. doi:23/5/1859 [pii]Google Scholar
  28. 28.
    Garrison SR, Dietrich A, Stucky CL (2012) TRPC1 contributes to light-touch sensation and mechanical responses in low-threshold cutaneous sensory neurons. J Neurophysiol 107(3):913–922CrossRefPubMedGoogle Scholar
  29. 29.
    Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263(5153):1618–1623CrossRefPubMedGoogle Scholar
  30. 30.
    Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277 (50):48303–48310. doi: 10.1074/jbc.M207882200M207882200 [pii]
  31. 31.
    Gomez TM, Robles E, Poo M, Spitzer NC (2001) Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291 (5510):1983–1987. doi: 10.1126/science.1056490291/5510/1983 [pii]
  32. 32.
    Gomez TM, Zheng JQ (2006) The molecular basis for calcium-dependent axon pathfinding. Nat Rev Neurosci 7 (2):115–125. doi:nrn1844 [pii] 10.1038/nrn1844
  33. 33.
    Greka A, Navarro B, Oancea E, Duggan A, Clapham DE (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6 (8):837–845. doi: 10.1038/nn1092nn1092 [pii]
  34. 34.
    Grimaldi M, Maratos M, Verma A (2003) Transient receptor potential channel activation causes a novel form of [Ca 2+]I oscillations and is not involved in capacitative Ca 2+ entry in glial cells. J Neurosci 23 (11):4737–4745. doi:23/11/4737 [pii]Google Scholar
  35. 35.
    Grosser BI, Monti-Bloch L, Jennings-White C, Berliner DL (2000) Behavioral and electrophysiological effects of androstadienone, a human pheromone. Psychoneuroendocrinology 25(3):289–299CrossRefPubMedGoogle Scholar
  36. 36.
    Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, Birnbaumer L, Konnerth A (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59(3):392–398. doi:
  37. 37.
    He Z, Jia C, Feng S, Zhou K, Tai Y, Bai X, Wang Y (2012) TRPC5 channel is the mediator of neurotrophin-3 in regulating dendritic growth via CaMKIIα in rat hippocampal neurons. J Neurosci 32(27):9383–9395. doi: 10.1523/jneurosci.6363-11.2012 CrossRefPubMedGoogle Scholar
  38. 38.
    Ito M (2000) Mechanisms of motor learning in the cerebellum. Brain Res 886(1–2):237–245CrossRefPubMedGoogle Scholar
  39. 39.
    Jia Y, Zhou J, Tai Y, Wang Y (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10 (5):559–567. doi:nn1870 [pii] 10.1038/nn1870
  40. 40.
    Kim JY, Zeng W, Kiselyov K, Yuan JP, Dehoff MH, Mikoshiba K, Worley PF, Muallem S (2006) Homer 1 mediates store- and inositol 1,4,5-trisphosphate receptor-dependent translocation and retrieval of TRPC3 to the plasma membrane. J Biol Chem 281(43):32540–32549. doi: 10.1074/jbc.M602496200 CrossRefPubMedGoogle Scholar
  41. 41.
    Kim SJ (2013) TRPC3 channel underlies cerebellar long-term depression. Cerebellum 12(3):334–337. doi: 10.1007/s12311-013-0455-1 CrossRefPubMedGoogle Scholar
  42. 42.
    Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ (2003) Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426 (6964):285–291. doi:
  43. 43.
    Kimchi T, Xu J, Dulac C (2007) A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448 (7157):1009–1014. doi:nature06089 [pii] 10.1038/nature06089
  44. 44.
    Knopfel T, Anchisi D, Alojado ME, Tempia F, Strata P (2000) Elevation of intradendritic sodium concentration mediated by synaptic activation of metabotropic glutamate receptors in cerebellar Purkinje cells. Eur J Neurosci 12(6):2199–2204CrossRefPubMedGoogle Scholar
  45. 45.
    Kress M, Karasek J, Ferrer-Montiel AV, Scherbakov N, Haberberger RV (2008) TRPC channels and diacylglycerol dependent calcium signaling in rat sensory neurons. Histochem Cell Biol 130(4):655–667. doi: 10.1007/s00418-008-0477-9 CrossRefPubMedGoogle Scholar
  46. 46.
    Kuan CY, Roth KA, Flavell RA, Rakic P (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23(7):291–297CrossRefPubMedGoogle Scholar
  47. 47.
    Leclerc C, Néant I, Moreau M (2011) Early neural development in vertebrates is also a matter of calcium. Biochimie 93 (12):2102–2111. doi:
  48. 48.
    Lemonnier L, Trebak M, Putney JW, Jr. (2008) Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 43 (5):506–514. doi:S0143–4160(07)00166–2 [pii] 10.1016/j.ceca.2007.09.001
  49. 49.
    Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99 (9):6376–6381. doi: 10.1073/pnas.082127599082127599 [pii]
  50. 50.
    Li H-S, Xu X-ZS, Montell C (1999) Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron 24(1):261–273. doi:
  51. 51.
    Li H, Huang J, Du W, Jia C, Yao H, Wang Y (2012) TRPC6 inhibited NMDA receptor activities and protected neurons from ischemic excitotoxicity. J Neurochem 123(6):1010–1018. doi: 10.1111/jnc.12045 CrossRefPubMedGoogle Scholar
  52. 52.
    Li M, Chen C, Zhou Z, Xu S, Yu Z (2012) A TRPC1-mediated increase in store-operated Ca2+ entry is required for the proliferation of adult hippocampal neural progenitor cells. Cell Calcium 51(6):486–496. doi:
  53. 53.
    Lucas-Meunier E, Fossier P, Baux G, Amar M (2003) Cholinergic modulation of the cortical neuronal network. Pflugers Arch 446(1):17–29. doi: 10.1007/s00424-002-0999-2 CrossRefPubMedGoogle Scholar
  54. 54.
    Malarkey EB, Ni Y, Parpura V (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56(8):821–835. doi: 10.1002/glia.20656 CrossRefPubMedGoogle Scholar
  55. 55.
    Maric D, Maric I, Barker JL (2000) Developmental changes in cell calcium homeostasis during neurogenesis of the embryonic rat cerebral cortex. Cereb Cortex 10(6):561–573CrossRefPubMedGoogle Scholar
  56. 56.
    McAllister AK (2007) Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 30:425–450. doi: 10.1146/annurev.neuro.29.051605.112830 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    McCutchen ME, Bramham CR, Pozzo-Miller LD (2002) Modulation of neuronal calcium signaling by neurotrophic factors. Int J Dev Neurosci 20(3–5):199–207CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    McGurk JS, Shim S, Kim JY, Wen Z, Song H, G-l M (2011) Postsynaptic TRPC1 function contributes to BDNF-induced synaptic potentiation at the developing neuromuscular junction. J Neurosci 31(41):14754–14762. doi: 10.1523/jneurosci.3599-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Minichiello L, Klein R (1996) TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar granule neurons. Genes Dev 10(22):2849–2858CrossRefPubMedGoogle Scholar
  60. 60.
    Mizoguchi Y, Kato TA, Seki Y, Ohgidani M, Sagata N, Horikawa H, Yamauchi Y, Sato-Kasai M, Hayakawa K, Inoue R, Kanba S, Monji A (2014) Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia. J Biol Chem 289 (26):18549–18555. doi: 10.1074/jbc.M114.555334M114.555334 [pii]
  61. 61.
    Munsch T, Freichel M, Flockerzi V, Pape HC (2003) Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci U S A 100 (26):16065–16070. doi: 10.1073/pnas.25353111002535311100 [pii]
  62. 62.
    Nakata H, Nakamura S (2007) Brain-derived neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC calcium signaling. FEBS Lett 581 (10):2047–2054. doi:S0014–5793(07)00429–2 [pii] 10.1016/j.febslet.2007.04.041
  63. 63.
    Nilius B (2003) From TRPs to SOCs, CCEs, and CRACs: consensus and controversies. Cell Calcium 33(5–6):293–298CrossRefPubMedGoogle Scholar
  64. 64.
    Paez PM, Fulton D, Spreuer V, Handley V, Campagnoni AT (2011) Modulation of canonical transient receptor potential channel 1 in the proliferation of oligodendrocyte precursor cells by the golli products of the myelin basic protein gene. J Neurosci 31 (10):3625–3637. doi: 10.1523/JNEUROSCI.4424-10.201131/10/3625 [pii]
  65. 65.
    Phelan KD, Mock MM, Kretz O, Shwe UT, Kozhemyakin M, Greenfield LJ, Dietrich A, Birnbaumer L, Freichel M, Flockerzi V, Zheng F (2012) Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration. Mol Pharmacol 81 (3):384–392. doi: 10.1124/mol.111.075341mol.111.075341 [pii]
  66. 66.
    Phelan KD, Shwe UT, Abramowitz J, Wu H, Rhee SW, Howell MD, Gottschall PE, Freichel M, Flockerzi V, Birnbaumer L, Zheng F (2013) Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Mol Pharmacol 83(2):429–438. doi: 10.1124/mol.112.082271 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Phillis JW (2005) Acetylcholine release from the central nervous system: a 50-year retrospective. Crit Rev Neurobiol 17 (3–4):161–217. doi:0c6ebf4a55da92b6,7f45271578c3b24d [pii]Google Scholar
  68. 68.
    Puram SV, Riccio A, Koirala S, Ikeuchi Y, Kim AH, Corfas G, Bonni A (2011) A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain. Genes Dev 25(24):2659–2673. doi: 10.1101/gad.174060.111 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Putney JW (2005) Physiological mechanisms of TRPC activation. Pflugers Arch 451(1):29–34. doi: 10.1007/s00424-005-1416-4 CrossRefPubMedGoogle Scholar
  70. 70.
    Qu L, Li Y, Pan X, Zhang P, LaMotte RH, Ma C (2012) Transient Receptor Potential Canonical 3 (TRPC3) is required for IgG immune complex-induced excitation of the rat dorsal root ganglion neurons. J Neurosci 32(28):9554–9562. doi: 10.1523/jneurosci.6355-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J, Taylor R, Forge A, Ashmore J, Kirkwood N, Kros CJ, Richardson GP, Freichel M, Flockerzi V, Birnbaumer L, Wood JN (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2(5)Google Scholar
  72. 72.
    Redmond L, Ghosh A (2005) Regulation of dendritic development by calcium signaling. Cell Calcium 37 (5):411–416. doi:S0143–4160(05)00025–4 [pii] 10.1016/j.ceca.2005.01.009
  73. 73.
    Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34(6):999–1010CrossRefPubMedGoogle Scholar
  74. 74.
    Rosenberg P, Hawkins A, Stiber J, Shelton JM, Hutcheson K, Bassel-Duby R, Shin DM, Yan Z, Williams RS (2004) TRPC3 channels confer cellular memory of recent neuromuscular activity. Proc Natl Acad Sci U S A 101 (25):9387–9392. doi: 10.1073/pnas.03081791010308179101 [pii]
  75. 75.
    Sacaan AI, Schoepp DD (1992) Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damage. Neurosci Lett 139 (1):77–82. doi:0304-3940(92)90862-2 [pii]Google Scholar
  76. 76.
    Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301 (5634):805–809. doi: 10.1126/science.1083328301/5634/805 [pii]
  77. 77.
    Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429 (6988):184–187. doi: 10.1038/nature02553nature02553 [pii]
  78. 78.
    Schubert V, Da Silva JS, Dotti CG (2006) Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner. J Cell Biol 172 (3):453–467. doi:jcb.200506136 [pii] 10.1083/jcb.200506136
  79. 79.
    See V, Boutillier AL, Bito H, Loeffler JP (2001) Calcium/calmodulin-dependent protein kinase type IV (CaMKIV) inhibits apoptosis induced by potassium deprivation in cerebellar granule neurons. FASEB J 15 (1):134–144. doi: 10.1096/fj.00-0106com15/1/134 [pii]
  80. 80.
    Shim S, Goh EL, Ge S, Sailor K, Yuan JP, Roderick HL, Bootman MD, Worley PF, Song H, Ming GL (2005) XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci 8 (6):730–735. doi:nn1459 [pii] 10.1038/nn1459
  81. 81.
    Singh I, Knezevic N, Ahmmed GU, Kini V, Malik AB, Mehta D (2007) Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282 (11):7833–7843. doi:M608288200 [pii] 10.1074/jbc.M608288200
  82. 82.
    Song H, Poo M (2001) The cell biology of neuronal navigation. Nat Cell Biol 3(3):E81–E88. doi: 10.1038/35060164 CrossRefPubMedGoogle Scholar
  83. 83.
    Song X, Zhao Y, Narcisse L, Duffy H, Kress Y, Lee S, Brosnan CF (2005) Canonical transient receptor potential channel 4 (TRPC4) co-localizes with the scaffolding protein ZO-1 in human fetal astrocytes in culture. Glia 49(3):418–429. doi: 10.1002/glia.20128 CrossRefPubMedGoogle Scholar
  84. 84.
    Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72 (5):295–339. doi: 10.1016/j.pneurobio.2004.03.004S0301008204000401 [pii]
  85. 85.
    Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103 (44):16586–16591. doi:0606894103 [pii] 10.1073/pnas.0606894103
  86. 86.
    Staaf S, Maxvall I, Lind U, Husmark J, Mattsson JP, Ernfors P, Pierrou S (2009) Down regulation of TRPC1 by shRNA reduces mechanosensitivity in mouse dorsal root ganglion neurons in vitro. Neurosci Lett 457(1):3–7. doi:
  87. 87.
    Stoop R, Poo MM (1996) Synaptic modulation by neurotrophic factors: differential and synergistic effects of brain-derived neurotrophic factor and ciliary neurotrophic factor. J Neurosci 16(10):3256–3264PubMedGoogle Scholar
  88. 88.
    Stroh O, Freichel M, Kretz O, Birnbaumer L, Hartmann J, Egger V (2012) NMDA receptor-dependent synaptic activation of TRPC channels in olfactory bulb granule cells. J Neurosci 32(17):5737–5746. doi: 10.1523/JNEUROSCI.3753-11.201232/17/5737 [pii]
  89. 89.
    Tai C, Hines DJ, Choi HB, MacVicar BA (2011) Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. Hippocampus 21(9):958–967. doi: 10.1002/hipo.20807 PubMedGoogle Scholar
  90. 90.
    Tai Y, Feng S, Ge R, Du W, Zhang X, He Z, Wang Y (2008) TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci 121(14):2301–2307CrossRefPubMedGoogle Scholar
  91. 91.
    Takumida M, Anniko M (2009) Expression of canonical transient receptor potential channel (TRPC) 1-7 in the mouse inner ear. Acta Otolaryngol 129 (12):1351–1358. doi: 10.3109/0001648090279835010.3109/00016480902798350 [pii]
  92. 92.
    Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276 (24):21303–21310. doi: 10.1074/jbc.M102316200M102316200 [pii]
  93. 93.
    Tian D, Jacobo SMP, Billing D, Rozkalne A, Gage SD, Anagnostou T, Pavenstädt H, Hsu H-H, Schlondorff J, Ramos A, Greka A (2010) Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal 3(145):ra77–ra77CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Trebak M, Lemonnier L, Smyth JT, Vazquez G, Putney JW Jr (2007) Phospholipase C-coupled receptors and activation of TRPC channels. Handb Exp Pharmacol 179:593–614. doi: 10.1007/978-3-540-34891-7_35 CrossRefGoogle Scholar
  95. 95.
    Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96(2):245–254CrossRefPubMedGoogle Scholar
  96. 96.
    Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417. doi: 10.1146/annurev.biochem.75.103004.142819 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434 (7035):898–904. doi:nature03478 [pii] 10.1038/nature03478
  98. 98.
    Weerth SH, Holtzclaw LA, Russell JT (2007) Signaling proteins in raft-like microdomains are essential for Ca2+ wave propagation in glial cells. Cell Calcium 41 (2):155–167. doi:S0143–4160(06)00124–2 [pii] 10.1016/j.ceca.2006.06.006
  99. 99.
    Weick JP, Austin Johnson M, Zhang SC (2009) Developmental regulation of human embryonic stem cell-derived neurons by calcium entry via transient receptor potential channels. Stem Cells 27(12):2906–2916. doi: 10.1002/stem.212 PubMedPubMedCentralGoogle Scholar
  100. 100.
    Xiao B, Tu JC, Worley PF (2000) Homer: a link between neural activity and glutamate receptor function. Curr Opin Neurobiol 10(3):370–374CrossRefPubMedGoogle Scholar
  101. 101.
    Yan HD, Villalobos C, Andrade R (2009) TRPC channels mediate a muscarinic receptor-induced afterdepolarization in cerebral cortex. J Neurosci 29 (32):10038–10046. doi: 10.1523/JNEUROSCI.1042-09.200929/32/10038 [pii]
  102. 102.
    Yano S, Tokumitsu H, Soderling TR (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396(6711):584–587. doi: 10.1038/25147 CrossRefPubMedGoogle Scholar
  103. 103.
    Yao H, Duan M, Yang L, Buch S (2012) Platelet-derived growth factor-BB restores human immunodeficiency virus Tat-cocaine-mediated impairment of neurogenesis: role of TRPC1 channels. J Neurosci 32 (29):9835–9847. doi: 10.1523/JNEUROSCI.0638-12.201232/29/9835 [pii]
  104. 104.
    Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089. doi: 10.1146/annurev.neuro.24.1.107124/1/1071 [pii]
  105. 105.
    Zhang Z, Reboreda A, Alonso A, Barker PA, Seguela P (2011) TRPC channels underlie cholinergic plateau potentials and persistent activity in entorhinal cortex. Hippocampus 21(4):386–397. doi: 10.1002/hipo.20755 CrossRefPubMedGoogle Scholar
  106. 106.
    Zhou J, Du W, Zhou K, Tai Y, Yao H, Jia Y, Ding Y, Wang Y (2008) Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 11(7):741–743. doi:
  107. 107.
    Zimmermann K, Lennerz JK, Hein A, Link AS, Kaczmarek JS, Delling M, Uysal S, Pfeifer JD, Riccio A, Clapham DE (2011) Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci U S A 108(44):18114–18119. doi: 10.1073/pnas.1115387108 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA
  2. 2.School of MedicineTsinghua UniversityBeijingChina
  3. 3.Peking-Tsinghua Joint Center for Life SciencesBeijingChina
  4. 4.IDG/McGovern Institute for Brain Research at TsinghuaBeijingChina

Personalised recommendations