Advertisement

TRPC Channels and Glioma

  • Shanshan LiEmail author
  • Xia DingEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 976)

Abstract

Glioma is the most common type of brain tumors and malignant glioma is extremely lethal, with patients’ 5-year survival rate less than 10%. Treatment of gliomas poses remarkable clinical challenges, not only because of their particular localization but also because glioma cells possess several malignant biological features, including highly proliferative, highly invasive, highly angiogenic, and highly metabolic aberrant. All these features make gliomas highly recurrent and drug resistant. Finding new and effective molecular drug targets for glioma is an urgent and critical task for both basic and clinical research. Recent studies have proposed a type of non-voltage-gated calcium channels, namely, canonical transient receptor potential (TRPC) channels, to be newly emerged potential drug targets for glioma. They are heavily involved in the proliferation, migration, invasion, angiogenesis, and metabolism of glioma cells. Abundant evidence from both cell models and preclinical mouse models has demonstrated that inhibition of TRPC channels shows promising anti-glioma effect. In this chapter, we will give a comprehensive review on the current progress in the studies on TRPC channels and glioma and discuss their potential clinical implication in glioma therapy.

Keywords

Glioma Drug targets TRPC 

References

  1. 1.
    Behin A, Hoang-Xuan K et al (2003) Primary brain tumours in adults. Lancet 361(9354):323–331Google Scholar
  2. 2.
    Bello L, Giussani C et al (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284Google Scholar
  3. 3.
    Berridge MJ, Bootman MD et al (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529Google Scholar
  4. 4.
    Bomben VC, Sontheimer H (2010) Disruption of transient receptor potential canonical channel 1 causes incomplete cytokinesis and slows the growth of human malignant gliomas. Glia 58(10):1145–1156Google Scholar
  5. 5.
    Bomben VC, Sontheimer HW (2008) Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas. Cell Prolif 41(1):98–121Google Scholar
  6. 6.
    Bomben VC, Turner KL et al (2011) Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. J Cell Physiol 226(7):1879–1888Google Scholar
  7. 7.
    Bryant JA, Finn RS et al (2004) EGF activates intracellular and intercellular calcium signaling by distinct pathways in tumor cells. Cancer Biol Ther 3(12):1243–1249Google Scholar
  8. 8.
    Cairns RA, Harris IS et al (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95Google Scholar
  9. 9.
    Chakraborty S, Berwick ZC et al (2011) Bromoenol lactone inhibits voltage-gated Ca2+ and transient receptor potential canonical channels. J Pharmacol Exp Ther 339(2):329–340Google Scholar
  10. 10.
    Chigurupati S, Venkataraman R et al (2010) Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 70(1):418–427Google Scholar
  11. 11.
    Ding X, He Z et al (2010) Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst 102(14):1052–1068Google Scholar
  12. 12.
    Dolecek TA, Propp JM et al (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(Suppl 5):v1–49Google Scholar
  13. 13.
    El Boustany C, Bidaux G et al (2008) Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47(6):2068–2077Google Scholar
  14. 14.
    Fabian A, Fortmann T et al (2008) TRPC1 channels regulate directionality of migrating cells. Pflugers Arch 457(2):475–484Google Scholar
  15. 15.
    Ge R, Tai Y et al (2009) Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett 283(1):43–51Google Scholar
  16. 16.
    Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205(12):613–621Google Scholar
  17. 17.
    Gustafsson MV, Zheng X et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628Google Scholar
  18. 18.
    Halaszovich CR, Zitt C et al (2000) Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275(48):37423–37428Google Scholar
  19. 19.
    Hamdollah Zadeh MA, Glass CA et al (2008) VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation 15(7):605–614Google Scholar
  20. 20.
    Hellwig N, Albrecht N et al (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118(Pt 5):917–928Google Scholar
  21. 21.
    Hofmann T, Schaefer M et al (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99(11):7461–7466Google Scholar
  22. 22.
    Inoue R, Okada T et al (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res 88(3):325–332Google Scholar
  23. 23.
    Jones NP, Schulze A (2012) Targeting cancer metabolism – aiming at a tumour’s sweet-spot. Drug Discov Today 17(5–6):232–241Google Scholar
  24. 24.
    Jung S, Muhle A et al (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278(6):3562–3571Google Scholar
  25. 25.
    Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24(6):719–736Google Scholar
  26. 26.
    Kini V, Chavez A et al (2010) A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem 285(43):33082–33091Google Scholar
  27. 27.
    Kiyonaka S, Kato K et al (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106(13):5400–5405CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Komuro H, Kumada T (2005) Ca2+ transients control CNS neuronal migration. Cell Calcium 37(5):387–393CrossRefPubMedGoogle Scholar
  29. 29.
    Koppenol WH, Bounds PL et al (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337CrossRefPubMedGoogle Scholar
  30. 30.
    Kraft R (2007) The Na+/Ca2+ exchange inhibitor KB-R7943 potently blocks TRPC channels. Biochem Biophys Res Commun 361(1):230–236CrossRefPubMedGoogle Scholar
  31. 31.
    Krock BL, Skuli N et al (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li S, Wang J et al (2015) Crucial role of TRPC6 in maintaining the stability of HIF-1alpha in glioma cells under hypoxia. J Cell Sci 128(17):3317–3329CrossRefPubMedGoogle Scholar
  33. 33.
    Lievremont JP, Bird GS et al (2005) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68(3):758–762PubMedGoogle Scholar
  34. 34.
    Liu Y, Cox SR et al (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res 77(3):638–643Google Scholar
  35. 35.
    Louis DN, Ohgaki H et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Louis M, Zanou N et al (2008) TRPC1 regulates skeletal myoblast migration and differentiation. J Cell Sci 121(Pt 23):3951–3959CrossRefPubMedGoogle Scholar
  37. 37.
    Majeed Y, Amer MS et al (2011) Stereo-selective inhibition of transient receptor potential TRPC5 cation channels by neuroactive steroids. Br J Pharmacol 162(7):1509–1520CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Malarkey EB, Ni Y et al (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56(8):821–835CrossRefPubMedGoogle Scholar
  39. 39.
    Mareel M, Leroy A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83(2):337–376CrossRefPubMedGoogle Scholar
  40. 40.
    Merritt JE, Armstrong WP et al (1990) SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J 271(2):515–522Google Scholar
  41. 41.
    Miller M, Shi J et al (2011) Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J Biol Chem 286(38):33436–33446CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Munoz-Pinedo C, El Mjiyad N et al (2012) Cancer metabolism: current perspectives and future directions. Cell Death Dis 3:e248CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Obukhov AG, Nowycky MC (2005) A cytosolic residue mediates Mg2+ block and regulates inward current amplitude of a transient receptor potential channel. J Neurosci 25(5):1234–1239CrossRefPubMedGoogle Scholar
  44. 44.
    Odell AF, Scott JL et al (2005) Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 280(45):37974–37987CrossRefPubMedGoogle Scholar
  45. 45.
    Oermann EK, Wu J et al (2012) Alterations of metabolic genes and metabolites in cancer. Semin Cell Dev Biol 23(4):370–380CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Okada T, Inoue R et al (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274(39):27359–27370CrossRefPubMedGoogle Scholar
  47. 47.
    Orrenius S, Nicotera P (1994) The calcium ion and cell death. J Neural Transm Suppl 43:1–11PubMedGoogle Scholar
  48. 48.
    Radner H, Blumcke I et al (2002) The new WHO classification of tumors of the nervous system 2000. Pathology and genetics. Pathologe 23(4):260–283CrossRefPubMedGoogle Scholar
  49. 49.
    Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8(5):361–375CrossRefPubMedGoogle Scholar
  50. 50.
    Sahlgren C, Gustafsson MV et al (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A 105(17):6392–6397CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Singh I, Knezevic N et al (2007) Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282(11):7833–7843Google Scholar
  52. 52.
    Song LL, Peng Y et al (2008) Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. Oncogene 27(44):5833–5844CrossRefPubMedGoogle Scholar
  53. 53.
    Strübing C, Krapivinsky G et al (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29(3):645–655CrossRefPubMedGoogle Scholar
  54. 54.
    Van Meir EG, Hadjipanayis CG et al (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60(3):166–193Google Scholar
  55. 55.
    Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417Google Scholar
  56. 56.
    Walker RL, Koh SD et al (2002) TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am J Phys Cell Physiol 283(6):C1637–C1645CrossRefGoogle Scholar
  57. 57.
    Wang B, Li W et al (2009) Hypoxia up-regulates vascular endothelial growth factor in U-87 MG cells: involvement of TRPC1. Neurosci Lett 459(3):132–136CrossRefPubMedGoogle Scholar
  58. 58.
    Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434(7035):898–904CrossRefPubMedGoogle Scholar
  59. 59.
    Xu SZ, Zeng F et al (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145(4):405–414CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Xu W, Yang H et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yang F, Zhang H et al (2014) Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect. Mol Cell 53(1):88–100CrossRefPubMedGoogle Scholar
  62. 62.
    Yang H, Mergler S et al (2005) TRPC4 knockdown suppresses epidermal growth factor-induced store-operated channel activation and growth in human corneal epithelial cells. J Biol Chem 280(37):32230–32237CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yu P-C, Gu S-Y et al (2010) TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res 106(7):1221–1232CrossRefPubMedGoogle Scholar
  64. 64.
    Zitt C, Zobel A et al (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16(6):1189–1196CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonUSA
  2. 2.Mouse Cancer Genetics ProgramNational Cancer Institute, NIHFrederickUSA

Personalised recommendations