Advertisement

Robot-Assisted Orthopedic Surgery

  • Wu Zixiang
  • Sang Hongxun
  • Yue Zhou
  • He Zhang
Chapter

Abstract

Robot has many advantages, such as precisely implanting devices, stable maneuver, and working in a toxic environment or a special space by remote control, in which the physician fails or even cannot perform surgeries. Therefore, since the 1880s, many scholars focused on the basic researches to advanced robotics technology and attempted to apply it in orthopedic surgeries.

References

  1. 1.
    Santos-Munné JJ, et al. A stereotactic/robotic system for pedicle screw placement. In: Morgan K, Satava R, Sieburg H, et al., editors. Proceedings of the medicine meets virtual reality III conference. San Diego, CA: IOS Press/Ohmsha; 1995. p. 326–33.Google Scholar
  2. 2.
    Ortmaier T, et al. A hands-on robot for accurate placement of pedicle screws. In: Proceedings, IEEE international conference on robotics and automation, 2006 (ICRA 2006). Orlando, Florida; 2006. p. 4179–4186.Google Scholar
  3. 3.
    Boschetti G, et al. A haptic system for robotic assisted spine surgery. In: Proceedings of IEEE conference on control applications (CCA 2005); 2005. p. 19–24.Google Scholar
  4. 4.
    Jin H, et al. Design and control strategy of robotic spinal surgical system. In: IEEE/ICME international conference on complex medical engineering. Harbin, China; 2011. p. 627–632.Google Scholar
  5. 5.
    Zhang C, Wang Z, Chen F, et al. Spine Bull’s-Eye Robot guidewire placement with pedicle standard axis view for thoracic and lumbar pedicle screw fixation. J Spinal Disord Tech. 2012;25(7):E191–8.CrossRefGoogle Scholar
  6. 6.
    Cleary K, Watson V, Lindisch D, et al. Precision placement of instruments for minimally invasive procedures using a ‘needle driver’ robot. Int J Med Robot. 2005;1(2):40–7.CrossRefGoogle Scholar
  7. 7.
    Melzer A, Gutmann B, Remmele T, et al. INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng Med Biol Mag. 2008;27(3):66–73.CrossRefGoogle Scholar
  8. 8.
    Tovar-Arriaga S, Tita R, Pedraza-Ortega JC, et al. Development of a robotic FD-CT-guided navigation system for needle placement- preliminary accuracy tests. Int J Med Robot. 2011;7(2):225–36.CrossRefGoogle Scholar
  9. 9.
    Onogi S, Gotoh M, Nakajima Y, et al. Vertebral robotic puncture for minimally invasive spinal surgery: puncture accuracy evaluation for vertebral model. Int J Comput Assist Radiol Surg. 2009;4(Suppl 1):121–2.Google Scholar
  10. 10.
    Wang T, Luan S, Hu L, et al. Force-based control of a compact spinal milling robot. Int J Med Robot. 2010;6(2):178–85.PubMedGoogle Scholar
  11. 11.
    Ascari L, Stefanini C, Bertocchi U, et al. Robot-assisted endoscopic exploration of the spinal cord. Proc Inst Mech Eng Part C J Mech Eng Sci. 2010;224(7):1515–29.CrossRefGoogle Scholar
  12. 12.
    Yang MS, Jung JH, Kim JM, et al. Current and future of spinal robot surgery. Korean J Spine. 2010;7(2):61–5.Google Scholar
  13. 13.
    Lee JYK, O’Malley BW, Newman JG, et al. Transoral robotic surgery of craniocervical junction and atlantoaxial spine: a cadaveric study. J Neurosurg Spine. 2010;12(1):13–8.CrossRefGoogle Scholar
  14. 14.
    Ponnusamy K, Chewning S, Mohr C. Robotic approaches to the posterior spine. Spine. 2009;34(19):2104–9.CrossRefGoogle Scholar
  15. 15.
    Kim MJ, Ha Y, et al. Robot-assisted anterior lumbar interbody fusion (ALIF) using retroperitoneal approach. Acta Neurochir. 2010;152(4):675–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. and People's Medical Publishing House 2018

Authors and Affiliations

  • Wu Zixiang
    • 1
  • Sang Hongxun
    • 2
  • Yue Zhou
    • 3
  • He Zhang
    • 3
  1. 1.Department of OrthopaedicsXijing Hospital, The Air Force Medical UniversityXi AnChina
  2. 2.Department of OrthopaedicsShenzhen Hospital, Southern Medical UniversityShenzhenChina
  3. 3.Xinqiao HospitalThird Military UniversityChongqingChina

Personalised recommendations