Advertisement

Computer-Assisted Orthopedic Surgery

  • Hong Gao
  • Sang Hongxun
  • Cheng Bin
  • Wu Zixiang
  • Fan Yong
  • Weihua Xu
  • Shuhua Yang
  • Ruoyu Wang
  • Chen Yanxi
  • Zhang Kun
Chapter

Abstract

Computer-assisted orthopedic surgery (CAOS) is performed by digitizing the patient’s anatomy, combining the images in a computerized system, and integrating the surgical instruments into the digitized image background. CAOS is originated in framework system at early stage and has experienced an enormous and rapid development since the invention of computer and the revolutionary progresses of other related field technologies in the 1990s. According to the chosen virtual representation of the surgical object, surgical navigation systems can be classified as image-free and image-based (preoperative and intraoperative) technology. Within the latter class, in particular, CT-, 2-D fluoroscopy-, and 3-D fluoroscopy-based systems have successfully made their way into the operating room. It also can be active or passive. Active navigation systems can either perform surgical task or prohibit the surgeon from moving past a predefined zoon, such as surgical robot systems. Passive navigation systems provide intraoperative information, which is displayed on a monitor, but the surgeon is free to make any decisions he or she deems necessary, such as CT- or fluoroscopy-based systems. Currently, CAOS has gained wide acceptance among orthopedic surgeons and has become an invaluable tool for some orthopedic procedures, such as fracture treatment, TKA, THA, spine surgery, musculoskeletal tumor surgery, shoulder surgery, corrective osteotomy, and anterior cruciate ligament reconstruction. It offers surgeons real-time feedback of the surgical field and enables them to adjust the surgical technique to improve postoperative outcomes and decrease intraoperative errors. However, some factors, including a significant learning curve, increased surgical time, requirements for special setup and equipment handling in the operating room, specialized technical support, and cost, have limited this technology to be applied more extensively. Only knowing the basics and the limitations of the underlying technical principles can be the large potential that modern CAOS systems make available exploited effectively for the benefit of the patient. Finally, the clinical applications of CAOS in trauma, spine, hip, and knee arthroplasty, tumor surgery, and other fields are depicted in the last section of this chapter.

References

  1. 1.
    Spiegel EA, Wycis HT, Marks M. Stereotaxic apparatus for operations on the human brain. Science. 1947;106:349–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Watanabe E, Watanabe T, Manaka S, et al. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol. 1987;27:543–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Roberts DW, Strohbehn JW, Hatch JF, et al. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg. 1986;65:545–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Foley KT, Simon DA, Rampersaud YR. Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine. 2001;26:347–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Simon DA, Lavallee S. Medical imaging and registration in computer assisted surgery. Clin Orthop Relat Res. 1998;354:17–27.CrossRefGoogle Scholar
  6. 6.
    Phillips R. The accuracy of surgical navigation for orthopaedic surgery. Curr Orthop. 2007;21:180–92.CrossRefGoogle Scholar
  7. 7.
    Atesok K, Schemitsch EH. Computer-assisted trauma surgery. J Am Acad Orthop Surg. 2010;18:247–58.PubMedCrossRefGoogle Scholar
  8. 8.
    Mavrogenis AF, Savvidou OD, Mimidis G, et al. Computer-assisted navigation in orthopaedic surgery. Orthopedics. 2013;36:631–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Kahler DM. Image guidance. Clin Orthop Relat Res. 2004;421:70–6.CrossRefGoogle Scholar
  10. 10.
    Stöckle U, König B, Dahne M, et al. Computer assisted pelvic and acetabular surgery: clinical experiences and indications. Unfallchirurg. 2002;105:886–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Mosheiff R, Khoury A, Weil Y, et al. First generation computerized fluoroscopic navigation in percutaneous pelvic surgery. J Orthop Trauma. 2004;18:106–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Crowl AC, Kathler DM. Closed reduction and percutaneous fixation of anterior column acetabular fractures. Comput Aided Surg. 2002;7:169–78.PubMedCrossRefGoogle Scholar
  13. 13.
    Mouhsine E, Garofalo R, Borens O, et al. Percutaneous retrograde screwing for stabilisation of acetabular fractures. Injury. 2005;36:1330–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Starr AJ, Jones AL, Reinert CM, et al. Preliminary results and complications following limited open reduction and percutaneous screw fixation of displaced fractures of the acetabulum. Injury. 2001;32(Suppl 1):45–50.CrossRefGoogle Scholar
  15. 15.
    Gao H, Luo CF, Hu CF, et al. Percutaneous screw fixation of acetabular fractures with 2-D fluoroscopy-based computerized navigation. Arch Orthop Trauma Surg. 2010;130:1177–83.CrossRefGoogle Scholar
  16. 16.
    Gao H, Luo CF, Hu CF, et al. Minimally invasive fluoro-navigation screw fixation for the treatment of pelvic ring injuries. Surg Innov. 2011;18:279–84.PubMedCrossRefGoogle Scholar
  17. 17.
    Hofstetter R, Slomczykowski M, Krettek C, et al. Computer-assisted fluoroscopy-based reduction of femoral fractures and anteversion correction. Comput Aided Surg. 2000;5:311–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Weil Y, Gardner M, Helfet D, et al. Accuracy of femoral shaft fracture reduction using fluoroscopy based computerized navigation- a laboratory study. Clin Orthop Relat Res. 2007;460:185–91.PubMedGoogle Scholar
  19. 19.
    Wilharm A, Gras F, Rausch S, et al. Navigation in femoral-shaft fractures – from lab tests to clinical routine. Injury. 2011;42:1346–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Nolte LP, Beutler T. Basic principles of CAOS. Injury. 2004;35:SA6–SA16.CrossRefGoogle Scholar
  21. 21.
    Ebraheim NA, Xu R, Biyani A, et al. Anatomic basis of lag screw placement in the anterior column of the acetabulum. Clin Orthop Relat Res. 1997;339:200–5.CrossRefGoogle Scholar
  22. 22.
    Gras F, Marintschev I, Klos K, et al. Screw placement for acetabular fractures: which navigation modality (2-dimensional vs. 3-dimensional) should be used? An experimental study. J Orthop Trauma. 2012;26(8):466–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Briem D, Linhart W, Lehmann W, et al. Computer-assisted screw insertion into the first sacral vertebra using a three-dimensional image intensifier: results of a controlled experimental investigation. Eur Spine J. 2006;15(6):757–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith HE, Yuan PS, Sasso R, et al. An evaluation of image-guided technologies in the place of percutaneous iliosacral screw. Spine. 2006;31(2):234–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Ochs BG, Gonser C, Shiozawa T, et al. Computer-assisted periacetabular screw placement: comparison of different fluoroscopy-based navigation procedures with conventional technique. Injury. 2010;41:1297–305.PubMedCrossRefGoogle Scholar
  26. 26.
    Nolte LP, Zamorano L, Visarius H, et al. Clinical evaluation of a system for precision enhancement in spine surgery. Clin Biomech. 1995;10:293–303.CrossRefGoogle Scholar
  27. 27.
    Nolte LP, Visarius H, Arm E. Computer-aided fixation of spinal implants. J Image Guid Surg. 1995;1:88–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Nolte LP, Zamorano L, Jiang Z, et al. Image-guided insertion of transpedicular screws: a laboratory set-up. Spine. 1995;20:497–500.PubMedCrossRefGoogle Scholar
  29. 29.
    Merloz P, Tonetti J, Eid A. Computer assisted spine surgery. Clin Orthop Relat Res. 1997;337:86–96.CrossRefGoogle Scholar
  30. 30.
    Merloz P, Tonetti J, Pittet L. Pedicle screw placement using image guided techniques. Clin Orthop Relat Res. 1998;354:39–48.CrossRefGoogle Scholar
  31. 31.
    Merloz P, Lavallee S, Tonetti J. Image-guided spinal surgery: technology, operative technique, and clinical practice. Oper Tech Orthop. 2000;10:56–63.CrossRefGoogle Scholar
  32. 32.
    Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine. 2010;35:2109–15.PubMedCrossRefGoogle Scholar
  33. 33.
    Mihalko WM, Krackow KA. Differences between extramedullary, intramedullary, and computer-aided surgery tibial alignment techniques for total knee arthroplasty. J Knee Surg. 2006;19:33–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Wong KC, Kumta SM. Joint-preserving tumor resection and reconstruction using image-guided computer navigation. Clin Orthop Relat Res. 2013;471:762–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Fehlberg S, Eulenstein S, Lange T, et al. Computer-assisted pelvic tumor resection: fields of application, limits and perspectives. Recent Results Cancer Res. 2009;179:169–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Bach CM, Winter P, Nogler M, et al. No functional impairment after Robodoc total hip arthroplasty: gait analysis in 25 patients. Acta Orthop Scand. 2002;73:386–91.PubMedCrossRefGoogle Scholar
  37. 37.
    Honl M, Dierk O, Gauck C, et al. Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J Bone Joint Surg Am. 2003;85:1470–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Lanfranco AR, Castellanos AE, Desai JP, et al. Robotic surgery-a current perspective. Ann Surg. 2004;239:14–21.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery. Nature. 2001;413:379–80.PubMedCrossRefGoogle Scholar
  40. 40.
    Sikorski JM, Chauhan S. Computer-assisted orthopaedic surgery: do we need CAOS? J Bone Joint Surg (Br). 2003;85:319–23.CrossRefGoogle Scholar
  41. 41.
    Rivkin G, Liebergall M. Challenges of technology integration and computer-assisted surgery. J Bone Joint Surg Am. 2009;91:13–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Langlotz F. Potential pitfalls of computer aided orthopedic surgery. Injury. 2004;35:SA17–23.CrossRefGoogle Scholar
  43. 43.
    Reddix RN Jr, Webb LX. Computer-assisted preoperative planning in the surgical treatment of acetabular fractures. J Surg Orthop Adv. 2007;16:138–43.PubMedGoogle Scholar
  44. 44.
    Cimerman M, Kristan A. Preoperative planning in pelvic and acetabular surgery: the value of advanced computerized planning modules. Injury. 2007;38:442–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Zheng GY, Kowal J, Ballester MAG, et al. Registration techniques for computer navigation. Curr Orthop. 2007;21:170–1179.CrossRefGoogle Scholar
  46. 46.
    Messmer P, Gross T, Suhm N, et al. Modality-based navigation. Injury. 2004;35:SA24–9.CrossRefGoogle Scholar
  47. 47.
    Dessenne V, Lavallee S, Julliard R, et al. Computer assisted knee anterior cruciate ligament reconstruction: first clinical tests. J Image Guid Surg. 1995;1:59–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Sati M, Staubli H, Bourquin Y, et al. Real-time computerized in situ guidance system for ACL graft placement. Comput Aided Surg. 2002;7:25–40.PubMedGoogle Scholar
  49. 49.
    Jenny JY, Boeri C. Unicompartmental knee prosthesis implantation with a non-image-based navigation system: rationale, technique, case-control comparative study with a conventional instrumented implantation. Knee Surg Sports Traumatol Arthrosc. 2003;11:40–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Sparmann M, Wolke B, Czupalla H, et al. Positioning of total knee arthroplasty with and without navigation support: a prospective, randomized study. J Bone Joint Surg (Br). 2003;85:830–5.CrossRefGoogle Scholar
  51. 51.
    Wong KC, Kumta SM, Chiu KH, et al. Precision tumour resection and reconstruction using image-guided computer navigation. J Bone Joint Surg Br. 2007;89:943–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Villavicencio AT, Burneikiene S, Bulsara KR, et al. Utility of computerized isocentric fluoroscopy for minimally invasive spinal surgical technique. J Spinal Disord Tech. 2005;18:369–75.PubMedCrossRefGoogle Scholar
  53. 53.
    Sasso RC, Best NM, Potts EA. Percutaneous computer assisted translaminar facet screw: an initial human cadaveric study. Spine J. 2005;5:515–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Amiot LP, Lang K, Putzier M, et al. Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine. 2000;25:606–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Pring ME, Weber KL, Unni KK, et al. Chondrosarcoma of the pelvis. A review of sixty-four cases. J Bone Joint Surg Am. 2001;83:1630–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Gofton W, Dubrowski A, Tabloie F, et al. The effect of computer navigation on trainee learning of surgical skills. J Bone Joint Surg Am. 2007;89:2819–27.PubMedCrossRefGoogle Scholar
  57. 57.
    Kendoff D, Bogojevic A, Citak M, et al. Experimental validation of noninvasive referencing in navigated procedures on long bones. J Orthop Res. 2005;25:201–7.CrossRefGoogle Scholar
  58. 58.
    Gosling T, Oszwald M, Kendoff D, et al. Computer-assisted antetorsion control prevents malrotation in femoral nailing: an experimental study and preliminary clinical case series. Arch Orthop Trauma Surg. 2009;129:1521–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Bonutti P, Dethmers S, Stiehl JB. Case report: femoral shaft fracture resulting from femoral tracker placement in navigated TKA. Clin Orthop Relat Res. 2008;466:1499–502.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Stockle U, Krettek C, Pohlemann T, et al. Clinical application-pelvis. Injury. 2004;35(Suppl 1):46–56.CrossRefGoogle Scholar
  61. 61.
    Hawi N, Haentjes J, Suero EM, et al. Navigated femoral shaft fracture treatment: current status. Technol Health Care. 2012;20:65–71.PubMedGoogle Scholar
  62. 62.
    Attias N, Lindsey RW, Starr AJ, et al. The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Joint Surg Br. 2005;87:1520–3.PubMedCrossRefGoogle Scholar
  63. 63.
    Giannoudis PV, Tzioupis CC, Pape HC, et al. Percutaneous fixation of the pelvic ring. J Bone Joint Surg Br. 2007;89:145–54.PubMedCrossRefGoogle Scholar
  64. 64.
    Braten M, Terjesen T, Rossvoll I. Torsional deformity after intramedullary nailing of femoral shaft fractures: measurement of femoral anteversion in 110 patients. J Bone Joint Surg Br. 1993;75:799–803.PubMedCrossRefGoogle Scholar
  65. 65.
    Jaarsma RL, Pakvis DF, Verdonschot N, et al. Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma. 2004;18:403–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Yang KH, Han DY, Jahng JS, et al. Prevention of malrotation in femoral deformity in femoral shaft fracture. J Orthop Trauma. 1998;12:558–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Wick M, Muhr G. Ante- und retrograde marknagelung bei femurschaftfrakturen. Trauma Berufskr. 2005;7:103–6.CrossRefGoogle Scholar
  68. 68.
    Hoaglund FT, Low WD. Anatomy of the femoral neck and head with comparative data from Caucasians and Hong Kong Chinese. Clin Orthop Relat Res. 1980;(152):10–6.Google Scholar
  69. 69.
    Kendoff D, Citak MC, Gardner MJ, et al. Navigated femoral nailing using noninvasive registration of the contralateral intact femur to restore anteversion. Technique and clinical use. J Orthop Trauma. 2007;21(10):725–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Stradiotti P, Curti A, Castellazzi G, Zerbi A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J. 2009;18(Suppl 1):102–8.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999;19(3):745–64.PubMedCrossRefGoogle Scholar
  72. 72.
    Kuszyk BS, Heath DG, Bliss DF, Fishman EK. Skeletal 3-D CT: advantages of volume rendering over surface rendering. Skelet Radiol. 1996;25(3):207–14.CrossRefGoogle Scholar
  73. 73.
    Qiang M, Chen Y, Zhang K, Li H, Dai H. Measurement of three-dimensional morphological characteristics of the calcaneus using CT image post-processing. J Foot Ankle Res. 2014;7(1):19.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Michelsen JD, Ahn UM, Helgemo SL. Motion of the ankle in a simulated supination-external rotation fracture model. J Bone Joint Surg Am. 1996;78(7):1024–31.PubMedCrossRefGoogle Scholar
  75. 75.
    Forberger J, Sabandal PV, Dietrich M, Gralla J, Lattmann T, Platz A. Posterolateral approach to the displaced posterior malleolus: functional outcome and local morbidity. Foot Ankle Int. 2009;30(4):309–14.PubMedCrossRefGoogle Scholar
  76. 76.
    Tejwani NC, Pahk B, Egol KA. Effect of posterior malleolus fracture on outcome after unstable ankle fracture. J Trauma. 2010;69(3):666–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Abdelgawad AA, Kadous A, Kanlic E. Posterolateral approach for treatment of posterior malleolus fracture of the ankle. J Foot Ankle Surg. 2011;50(5):607–11.PubMedCrossRefGoogle Scholar
  78. 78.
    Ferries JS, DeCoster TA, Firoozbakhsh KK, Garcia JF, Miller RA. Plain radiographic interpretation in trimalleolar ankle fractures poorly assesses posterior fragment size. J Orthop Trauma. 1994;8(4):328–31.PubMedCrossRefGoogle Scholar
  79. 79.
    Chen Y, Qiang M, Zhang K, Li H, Dai H. A reliable radiographic measurement for evaluation of normal distal tibiofibular syndesmosis: a multi-detector computed tomography study in adults. J Foot Ankle Res. 2015;8:32.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Beumer A, van Hemert WL, Niesing R, et al. Radiographic measurement of the distal tibiofibular syndesmosis has limited use. Clin Orthop Relat Res. 2004;423:227–34.CrossRefGoogle Scholar
  81. 81.
    Chen Y, Zhang K, Qiang M, Li H, Dai H. Computer-assisted preoperative planning for proximal humeral fractures by minimally invasive plate osteosynthesis. Chin Med J. 2014;127(18):3278–85.PubMedCrossRefGoogle Scholar
  82. 82.
    Chen Y, Qiang M, Zhang K, Li H, Dai H. Novel computer-assisted preoperative planning system for humeral shaft fractures: report of 43 cases. Int J Med Rob Comput Assisted Surg. 2015;11(2):109–19.CrossRefGoogle Scholar
  83. 83.
    Chen Y, Zhang K, Qiang M, Li H, Dai H. Comparison of plain radiography and CT in postoperative evaluation of ankle fractures. Clin Radiol. 2015;70(8):e74–82.PubMedCrossRefGoogle Scholar
  84. 84.
    Qiang M, Chen Y, Zhang K, Li H, Dai H. Effect of sustentaculum screw placement on outcomes of intra-articular calcaneal fracture osteosynthesis: a prospective cohort study using 3D CT. Int J Surg. 2015;19:72–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Chen YX, Zhang K, Hao YN, Hu YC. Research status and application prospects of digital technology in orthopaedics. Orthop Surg. 2012;4(3):131–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. and People's Medical Publishing House 2018

Authors and Affiliations

  • Hong Gao
    • 1
  • Sang Hongxun
    • 1
  • Cheng Bin
    • 2
  • Wu Zixiang
    • 3
  • Fan Yong
    • 4
  • Weihua Xu
    • 5
  • Shuhua Yang
    • 5
  • Ruoyu Wang
    • 5
  • Chen Yanxi
    • 1
  • Zhang Kun
    • 1
  1. 1.Department of Orthopaedic TraumaEast Hospital, Tongji University School of MedicineShanghaiChina
  2. 2.The Fourth Military Medical UniversityXi’anChina
  3. 3.Department of OrthopaedicsXijing Hospital, The Air Force Medical UniversityXi AnChina
  4. 4.Department of OrthopedicsKunming General Hospital of Chengdu Military Area CommandKunmingChina
  5. 5.Wuhan Union HospitalHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations