Advertisement

Augmented Reality for Digital Orthopedic Applications

  • Min-Liang Wang
  • Yeoulin Ho
  • Ramakanteswararao Beesetty
  • Stephane Nicolau
Chapter

Abstract

Orthopedic diseases, either degenerative or osteoporotic, have become increasingly prevalent over the past two decades. Compression fracture, one of the most common forms of osteoporotic fractures, renders the patient completely disabled. With the increase in life expectancy, the demand for better healthcare to ensure a better life quality for older people has grown. Minimally invasive surgery (MIS) has presented itself as one of the major evolution in surgical techniques. As a greater benefit to the patients, it has reduced morbidity and recovery time after an intervention. This is a very significant advantage for orthopedic MIS. For example, C-arm images are required in spinal surgery. However, this introduces a major radiation hazard to both the patient and the surgeon. Another difficulty is the learning curve associated with this procedure. Currently, a novice surgeon requires many years of practice with an expert surgeon to perform interventions with a high degree of accuracy and safety. Thus, the purpose of the computer-aided surgery system is to develop an augmented reality guidance system for orthopedic surgery to facilitate in surgical procedures and through the process reduce the radiation exposure. Finally, the clinical trials of real-time augmented reality for spinal surgery and a proposed AR system depict in the last section of this chapter.

Notes

Acknowledgments

The authors would like to thank Prof. Huei-Yung Lin for his useful discussion and Yeoulin Ho, Ramakanteswararao Beesetty, Stephane Nicolau, Ming-Hsien Hu, Jeng-Ren Wu, Kai-Che Liu, Luc Soler, and Pei-Yung Lee for their help of clinical trial and article writing. The work was supported by the National Science Council of Taiwan, R.O.C., under Grant NSC-101-2218-E-758-001- and NSC-100-2221-E-442-001 and is gratefully acknowledged.

References

  1. 1.
    Computer aided surgery definition from wikipedia. http://en.wikipedia.org/wiki/Computer-assisted_surgery.
  2. 2.
  3. 3.
  4. 4.
    Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral ct data: Theory and method. Radiographics. 1999;19(3):745–64.PubMedGoogle Scholar
  5. 5.
  6. 6.
    Marescaux J, Rubino F, Arenas M, Mutter D, Soler L. Augmented-reality-assisted laparoscopic adrenalectomy. JAMA. 2004;292(18):2214–5.PubMedGoogle Scholar
  7. 7.
    Nicolau S, Garcia A, Pennec X, Soler L, Ayache N. An augmented reality system to guide radio- frequency tumour ablation. Comput Anim Virtual Worlds. 2005;16(1):1–10.Google Scholar
  8. 8.
    Bianchi G, Harders CWM, Cattin P, Székely G. Camera-marker alignment framework and comparison with hand-eye calibration for augmented reality applications. In: 2005. Proceedings. Fourth IEEE and ACM international symposium on mixed and augmented reality. IEEE; 2005. p. 188–9.Google Scholar
  9. 9.
    Feuerstein M, Mussack T, Heining SM, Navab N. Intraoperative laparoscope augmentation for port placement and resection planning in minimally invasive liver resection. IEEE Trans Med Imaging. 2008;27(3):355–69.PubMedGoogle Scholar
  10. 10.
    Paloc C, Carrasco E, Macia I, Gomez R, Barandiaran I, Jimenez JM, Rueda O, Ortiz de Urbina J, Valdivieso A, Sakas G. Computer-aided surgery based on auto-stereoscopic augmented reality. In: IV 2004. Proceedings. Eighth international conference on information visualisation. IEEE; 2004. p. 189–93.Google Scholar
  11. 11.
    Sauer F, Khamene A, Vogt S. An augmented reality navigation system with a single-camera tracker: system design and needle biopsy phantom trial. In: Medical image computing and computer-assisted intervention—MICCAI 2002. Berlin: Springer; 2002. p. 116–24.Google Scholar
  12. 12.
    Ferrari V, Megali G, Troia E, Pietrabissa A, Mosca F. A 3-d mixed-reality system for stereoscopic visualization of medical dataset. IEEE Trans Biomed Eng. 2009;56(11):2627–33.PubMedGoogle Scholar
  13. 13.
    Masamune K, Sato I, Liao H, Dohi T. Non-metal slice image overlay display system used inside the open type MRI. In: Medical imaging and augmented reality. Berlin: Springer; 2008. p. 385–92.Google Scholar
  14. 14.
    Birkfellner W, Figl M, Matula C, Hummel J, Hanel R, Imhof H, Wanschitz F, Wagner A, Watzinger F, Bergmann H. Computer-enhanced stereoscopic vision in a head-mounted operating binocular. Phys Med Biol. 2003;48(3):N49.PubMedGoogle Scholar
  15. 15.
    Birkfellner W, Figl M, Huber K, Watzinger F, Wanschitz F, Hummel J, Hanel R, Greimel W, Homolka P, Ewers R, et al. A head-mounted operating binocular for augmented reality visualization in medicine-design and initial evaluation. IEEE Trans Med Imaging. 2002;21(8):991–7.PubMedGoogle Scholar
  16. 16.
    Khan MF, Dogan S, Maataoui A, Gurung J, Schiemann M, Ackermann H, Wesarg S, Sakas G, Vogl TJ. Accuracy of biopsy needle navigation using the medarpa system—computed tomography reality superimposed on the site of intervention. Eur Radiol. 2005;15(11):2366–74.PubMedGoogle Scholar
  17. 17.
    Khan MF, Dogan S, Maataoui A, Wesarg S, Gurung J, Ackermann H, Schiemann M, Wimmer-Greinecker G, Vogl TJ. Navigation-based needle puncture of a cadaver using a hybrid tracking navigational system. Investig Radiol. 2006;41(10):713–20.Google Scholar
  18. 18.
    Liao H, Inomata T, Sakuma I, Dohi T. 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay. IEEE Trans Biomed Eng. 2010;57(6):1476–86.PubMedGoogle Scholar
  19. 19.
    Nicolau S, Soler L, Mutter D, Marescaux J. Augmented reality in laparoscopic surgical oncology. Surg Oncol. 2011;20(3):189–201.PubMedGoogle Scholar
  20. 20.
    Navab N, Traub J, Sielhorst T, Feuerstein M, Bichlmeier C. Action-and workflow-driven augmented reality for computer-aided medical procedures. IEEE Comput Graph Appl. 2007;27(5):10–4.PubMedGoogle Scholar
  21. 21.
    Fuchs H, Livingston M, Raskar R, Colucci D, Keller K, State A, Crawford J, Rademacher P, Drake S, Meyer A. Augmented reality visualization for laparoscopic surgery. In: Medical image computing and computer-assisted intervention. Berlin: Springer; 1998. p. 934–43.Google Scholar
  22. 22.
    Feuerstein M. Augmented reality in laparoscopic surgery. PhD thesis. 2007.Google Scholar
  23. 23.
    Salah Z, Preim B, Elolf E, Franke J, Rose G. Improved navigated spine surgery utilizing augmented reality visualization. In: Bildverarbeitung für die Medizin 2011. Berlin: Springer; 2011. p. 319–23.Google Scholar
  24. 24.
    Schulze M. Interoperative guidance via medical augmented reality. Diploma thesis. 2007.Google Scholar
  25. 25.
    Marescaux J, Soler L, Rubino F. Augmented reality for surgery and interventional therapy. Oper Tech Gen Surg. 2005;7(4):182–7.Google Scholar
  26. 26.
    Kelly P, Kall B, Goerss S, Earnest F IV. Computer-assisted stereotaxic laser resection of intra-axial brain neoplasms. J Neurosurg. 1986;64(3):427–39.PubMedGoogle Scholar
  27. 27.
    Grimson W, Ettinger G, White S, Gleason P, Lozano-Pérez T, Wells W, Kikinis R. Evaluating and validating an automated registration system for enhanced reality visualization in surgery. In: Computer vision, virtual reality and robotics in medicine. Berlin: Springer; 1995. p. 1–12.Google Scholar
  28. 28.
    Edwards P, Hawkes D, Hill D, Jewell D, Spink R, Strong A, Gleeson M. Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance. Comput Aided Surg. 1995;1(3):172–8.Google Scholar
  29. 29.
    Sauer F, Vogt S, Khamene A, Heining S, Euler E, Schneberger M, Zuerl K, Mutschler W. Augmented reality visualization for thoracoscopic spine surgery. In: Medical imaging. International Society for Optics and Photonics; 2006. p. 614106.Google Scholar
  30. 30.
    Glossop N, Wedlake C, Moore J, Peters T, Wang Z. Laser projection augmented reality system for computer assisted surgery. In: Medical image computing and computer-assisted intervention-MICCAI 2003. Berlin: Springer; 2003. p. 239–46.Google Scholar
  31. 31.
    Brodeur P, Dansereau J, De Guise J, Labelle H. A points-to-surfaces matching technique for the application of augmented reality during spine surgery. In: IEEE 17th annual conference on engineering in medicine and biology society, vol. 2. IEEE; 1995. p. 1197–8.Google Scholar
  32. 32.
    Nollert G, Hartkens T, Figel A, Bulitta C, Altenbeck F, Gerhard V. The hybrid operating room. 2011.Google Scholar
  33. 33.
    Van Breemen A, De Vries T. Design and implementation of a room thermostat using an agent-based approach. Control Eng Pract. 2001;9(3):233–48.Google Scholar
  34. 34.
    Nollert G, Wich S. Planning a cardiovascular hybrid operating room: the technical point of view. Heart Surg Forum. 2009;12:125–30.Google Scholar
  35. 35.
    Bailey J, et al. Ullmann’s encyclopedia of industrial chemistry. New York: Wiley; 2001.Google Scholar
  36. 36.
    Park S, Park G. Active calibration of camera-projector systems based on planar homography. In: International conference on pattern recognition. IEEE; 2010. p. 320–3.Google Scholar
  37. 37.
    Kahrs L, Hoppe H, Eggers G, Raczkowsky J, Marmulla R, Worn H. Visualization of surgical 3d information with projector-based augmented reality. Stud Health Technol Inform. 2005;111:243–6.PubMedGoogle Scholar
  38. 38.
    Jaffray D, Kupelian P, Djemil T, Macklis RM. Review of image-guided radiation therapy. Expert Rev Anticancer Ther. 2007;7(1):89–103.PubMedGoogle Scholar
  39. 39.
    Peters TM, Cleary KR. Image-guided interventions: technology and applications. New York: Springer; 2008.Google Scholar
  40. 40.
    Romanelli P, Schweikard A, Schlaefer A, Adler J. Computer aided robotic radiosurgery. Comput Aided Surg. 2006;11(4):161–74.PubMedGoogle Scholar
  41. 41.
    Peters TM. Image-guidance for surgical procedures. Phys Med Biol. 2006;51(14):R505.PubMedGoogle Scholar
  42. 42.
    Mauro MA, Zollikofer CL. Image-guided interventions, vol. 1. Philadelphia: Saunders; 2008.Google Scholar
  43. 43.
    Mayberg MR, LaPresto E, Cunningham EJ. Image-guided endoscopy: description of technique and potential applications. Neurosurg Focus. 2005;19(1):1–5.Google Scholar
  44. 44.
    May GR. Image-guided interventions. Am J Roentgenol. 2010;194(3):W281.Google Scholar
  45. 45.
    DiMaio S, Kapur T, Cleary K, Aylward S, Kazanzides P, Vosburgh K, Ellis R, Duncan J, Farahani K, Lemke H, et al. Challenges in image-guided therapy system design. NeuroImage. 2007;37:S144–51.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Avanzo M, Romanelli P. Spinal radiosurgery: technology and clinical outcomes. Neurosurg Rev. 2009;32(1):1–13.PubMedGoogle Scholar
  47. 47.
    Markelj P, Tomaževiè D, Likar B, Pernuš F. A review of 3D/2D registration methods for image-guided interventions. Med Image Anal. 2012;16(3):642–61.PubMedGoogle Scholar
  48. 48.
    Rui W, Minglu L. An overview of medical image registration. In: Proceedings. Fifth international conference on computational intelligence and multimedia applications, 2003. ICCIMA 2003. IEEE; 2003. p. 385–90.Google Scholar
  49. 49.
    Fitzpatrick JM, Hill DL, Maurer CR Jr. Image registration. In: Handbook of medical imaging, vol. 2. Bellingham: SPIE; 2000. p. 447–513.Google Scholar
  50. 50.
    Wen P. Medical image registration based-on points, contour and curves. In: International conference on biomedical engineering and informatics, 2008. BMEI 2008, vol. 2. IEEE; 2008. p. 132–6.Google Scholar
  51. 51.
    Shamir RR, Freiman M, Joskowicz L, Spektor S, Shoshan Y. Surface-based facial scan registration in neuronavigation procedures: a clinical study. J Neurosurg. 2009;111(6):1201–6.PubMedGoogle Scholar
  52. 52.
    Lee J-D, Huang C-H, Wang S-T, Lin C-W, Lee S-T. Fast-micp for frameless image-guided surgery. Med Phys. 2010;37:4551.PubMedGoogle Scholar
  53. 53.
    Sugano N. Computer-assisted orthopaedic surgery and robotic surgery in total hip arthroplasty. Clin Orthop Surg. 2013;5:1–9.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Penney G, Barratt D, Chan C, Slomczykowski M, Carter T, Edwards P, Hawkes D. Cadaver validation of intensity-based ultrasound to ct registration. Med Image Anal. 2006;10(3):385.PubMedGoogle Scholar
  55. 55.
    Micu R, Jakobs TF, Urschler M, Navab N. A new registration/visualization paradigm for CT-fluoroscopy guided RF liver ablation. In: Medical image computing and computer-assisted intervention–MICCAI 2006. Berlin: Springer; 2006. p. 882–90.Google Scholar
  56. 56.
    Birkfellner W, Figl M, Kettenbach J, Hummel J, Homolka P, Schernthaner R, Nau T, Bergmann H. Rigid 2D/3D slice-to-volume registration and its application on fluoroscopic CT images. Med Phys. 2007;34:246.PubMedGoogle Scholar
  57. 57.
    Frühwald L, Kettenbach J, Figl M, Hummel J, Bergmann H, Birkfellner W. A comparative study on manual and automatic slice-to-volume registration of ct images. Eur Radiol. 2009;19(11):2647–53.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Hummel J, Figl M, Bax M, Bergmann H, Birkfellner W. 2D/3D registration of endoscopic ultrasound to CT volume data. Phys Med Biol. 2008;53(16):4303.PubMedGoogle Scholar
  59. 59.
    Mori K, Deguchi D, Akiyama K, Kitasaka T, Maurer CR Jr, Suenaga Y, Takabatake H, Mori M, Natori H. Hybrid bronchoscope tracking using a magnetic tracking sensor and image registration. In: Medical image computing and computer-assisted intervention–MICCAI 2005. Berlin: Springer; 2005. p. 543–50.Google Scholar
  60. 60.
    Deligianni F, Chung AJ, Yang G-Z. Nonrigid 2-D/3-D registration for patient specific bronchoscopy simulation with statistical shape modeling: phantom validation. IEEE Trans Med Imaging. 2006;25(11):1462–71.PubMedGoogle Scholar
  61. 61.
    Burschka D, Li M, Ishii M, Taylor RH, Hager GD. Scale-invariant registration of monocular endoscopic images to CT-scans for sinus surgery. Med Image Anal. 2005;9(5):413–26.PubMedGoogle Scholar
  62. 62.
    Penney G, Varnavas A, Dastur N, Carrell T. An image-guided surgery system to aid endovascular treatment of complex aortic aneurysms: description and initial clinical experience. In: Information processing in computer-assisted interventions. Berlin: Springer; 2011. p. 13–24.Google Scholar
  63. 63.
    Russakoff DB, Rohlfing T, Adler JR Jr, Maurer CR Jr, et al. Acad Radiol. 2005;12(1):37–50.PubMedGoogle Scholar
  64. 64.
    Mersmann S, Müller M, Seitel A, Arnegger F, Tetzlaff R, Dinkel J, Baumhauer M, Schmied B, Meinzer H-P, Maier-Hein L. Time-of-flight camera technique for augmented reality in computer-assisted interventions. In: SPIE medical imaging. International Society for Optics and Photonics; 2011. p. 79642C.Google Scholar
  65. 65.
    Nicolau S, Goffin L, Soler L. A low cost and accurate guidance system for laparoscopic surgery: validation on an abdominal phantom. In: Proceedings of the ACM symposium on virtual reality software and technology. New York: ACM; 2005. p. 124–133.Google Scholar
  66. 66.
    Scheuering M, Schenk A, Schneider A, Preim B, Greiner G. Intraoperative augmented reality for minimally invasive liver interventions. In: Medical imaging 2003. International Society for Optics and Photonics; 2003. p. 407–17.Google Scholar
  67. 67.
    Mourgues F, Vieville T, Falk V, Coste-Manière È. Interactive guidance by image overlay in robot assisted coronary artery bypass. In: Medical image computing and computer-assisted intervention-MICCAI 2003. Berlin: Springer; 2003. p. 173–81.Google Scholar
  68. 68.
    Coste-Manière È, Adhami L, Mourgues F, Bantiche O. Optimal planning of robotically assisted heart surgery: first results on the transfer precision in the operating room. Int J Rob Res. 2004;23(4-5):539–48.Google Scholar
  69. 69.
    Mårvik R, Langø T, Tangen G, Andersen J, Kaspersen J, Ystgaard B, Sjølie E, Fougner R, Fjøsne H, Hernes TN, et al. Surg Endosc. 2004;18(8):1242–8.PubMedGoogle Scholar
  70. 70.
    K. Konishi, M. Hashizume, M. Nakamoto, Y. Kakeji, I. Yoshino, A. Taketomi, Y. Sato, S. Tamura, and Y. Maehara, “Augmented Reality Navigation System for Endoscopic Surgery Based on Three-Dimensional Ultrasound and Computed Tomography: Application to 20 Clinical Cases,” Int’l Congress Series, cARS 2005: Computer Assisted Radiology and Surgery. http://www.sciencedirect.com/science/article/B7581-4GFTP32-3N/2/fb6fb4fea98d3ad4b823e59d3ae4b355, vol. 1281, pp. 537–542, 2005.
  71. 71.
    Feuerstein M, Reichl T, Vogel J, Traub J, Navab N. Magneto-optical tracking of flexible laparoscopic ultrasound: model-based online detection and correction of magnetic tracking errors. IEEE Trans Med Imaging. 2009;28(6):951–67.PubMedGoogle Scholar
  72. 72.
    Nakamoto M, Hirayama H, Sato Y, Konishi K, Kakeji Y, Hashizume M, Tamura S. Recovery of respiratory motion and deformation of the liver using laparoscopic freehand 3D ultrasound system. Med Image Anal. Amsterdam: Elsevier. 2007;11(5):429–42.Google Scholar
  73. 73.
    Hostettler A, George D, Rémond Y, Nicolau SA, Soler L, Marescaux J. Bulk modulus and volume variation measurement of the liver and the kidneys in vivo using abdominal kinetics during free breathing. Comput Methods Prog Biomed. 2010;100(2):149–57.Google Scholar
  74. 74.
    Soler L, Doignon C, Bano J, Nicolau S. Registration of preoperative liver model for laparoscopic surgery from intraoperative 3d acquisition. In: Medical image computing and computer-assisted intervention-MICCAI 2013. Berlin: Springer; 2013.Google Scholar
  75. 75.
    Carter T, Tanner C, Beechey-Newman N, Barratt D, Hawkes D. MR navigated breast surgery: method and initial clinical experience. In: Medical image computing and computer-assisted intervention–MICCAI 2008. Berlin: Springer; 2008. p. 356–63.Google Scholar
  76. 76.
    Rauth TP, Bao PQ, Galloway RL, Bieszczad J, Friets EM, Knaus DA, Kynor DB, Herline AJ. Laparoscopic surface scanning and subsurface targeting: implications for image-guided laparoscopic liver surgery. Surgery. 2007;142(2):207–14.PubMedGoogle Scholar
  77. 77.
    Malti A, Bartoli A, Collins T. Template-based conformal shape-from-motion-and-shading for laparoscopy. In: Information processing in computer-assisted interventions. Berlin: Springer; 2012. p. 1–10.Google Scholar
  78. 78.
    Maier-Hein L, Mountney P, Bartoli A, Elhawary H, Elson D, Groch A, Kolb A, Rodrigues M, Sorger J, Speidel S, et al. Optical techniques for 3d surface reconstruction in computer-assisted laparoscopic surgery. Med Image Anal. 2013;17:974.PubMedGoogle Scholar
  79. 79.
    Albitar I, Graebling P, Doignon C. Robust structured light coding for 3d reconstruction. In: IEEE 11th international conference on computer vision, 2007. ICCV 2007. IEEE; 2007. p. 1–6.Google Scholar
  80. 80.
    Maurice X, Graebling P, Doignon C. Real-time structured light patterns coding with subperfect submaps. In: SPIE photonics Europe. International Society for Optics and Photonics; 2010. p. 77240E.Google Scholar
  81. 81.
    Penne J, Höller K, Stürmer M, Schrauder T, Schneider A, Engelbrecht R, Feußner H, Schmauss B, Hornegger J. Time-of-flight 3-D endoscopy. In: Medical image computing and computer-assisted intervention–MICCAI 2009. Berlin: Springer; 2009. p. 467–74.Google Scholar
  82. 82.
    Stoyanov D, Scarzanella MV, Pratt P, Yang G-Z. Real-time stereo reconstruction in robotically assisted minimally invasive surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2010. Berlin: Springer; 2010. p. 275–82.Google Scholar
  83. 83.
    Lo B, Chung AJ, Stoyanov D, Mylonas G, Yang G-Z. Real-time intra-operative 3d tissue deformation recovery. In: 5th IEEE international symposium on biomedical imaging: from nano to macro, 2008. ISBI 2008. IEEE; 2008. p. 1387–90.Google Scholar
  84. 84.
    Mountney P, Stoyanov D, Davison A, Yang G-Z. Simultaneous stereoscope localization and soft-tissue mapping for minimal invasive surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2006. Berlin: Springer; 2006. p. 347–54.Google Scholar
  85. 85.
    Mountney P, Yang G-Z. Motion compensated slam for image guided surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2010. Berlin: Springer; 2010. p. 496–504.Google Scholar
  86. 86.
    Röhl S, Bodenstedt S, Suwelack S, Kenngott H, Müller-Stich BP, Dillmann R, Speidel S. Dense GPU-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration. Med Phys. 2012;39:1632.PubMedGoogle Scholar
  87. 87.
    Hu M, Penney GP, Rueckert D, Edwards PJ, Bello F, Casula R, Figl M, Hawkes DJ. Non-rigid reconstruction of the beating heart surface for minimally invasive cardiac surgery. In: Medical image computing and computer-assisted intervention–MICCAI 2009. Berlin: Springer; 2009. p. 34–42.Google Scholar
  88. 88.
    Hu M, Penney G, Figl M, Edwards P, Bello F, Casula R, Rueckert D, Hawkes D. Reconstruction of a 3D surface from video that is robust to missing data and outliers: application to minimally invasive surgery using stereo and mono endoscopes. Med Image Anal. 2012;16(3):597–611.PubMedGoogle Scholar
  89. 89.
    Collins T, Compte B, Bartoli A. Deformable shape-from-motion in laparoscopy using a rigid sliding window. In: Medical image understanding and analysis conference. 2011.Google Scholar
  90. 90.
    Herrera SEM, Malti A, Morel O, Bartoli A. Shape-from-polarization in laparoscopy. In: IEEE 10th international symposium on biomedical imaging (ISBI), 2013. IEEE; 2013.Google Scholar
  91. 91.
    Figl M, Rueckert D, Hawkes D, Casula R, Hu M, Pedro O, Zhang DP, Penney G, Bello F, Edwards P. Image guidance for robotic minimally invasive coronary artery bypass. Comput Med Imaging Graph. 2010;34(1):61–8.PubMedGoogle Scholar
  92. 92.
    Su L-M, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology. 2009;73(4):896–900.PubMedGoogle Scholar
  93. 93.
    Kim J-H, Bartoli A, Collins T, Hartley R. Tracking by detection for interactive image augmentation in laparoscopy. In: Biomedical image registration. Berlin: Springer; 2012. p. 246–55.Google Scholar
  94. 94.
    IRCAD-France. The visible patient. http://visiblepatient.eu/links.html/.
  95. 95.
  96. 96.
    Tsai R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J Robot Autom. 1987;3(4):323–44.Google Scholar
  97. 97.
    D. Ghimire and J. Lee. A lighting insensitive face detection method on color images. In: 2012 spring congress on engineering and technology (S-CET). IEEE; 2012. p. 1–4.Google Scholar
  98. 98.
    Wang M-L, Wu H-S, He C-H, Huang W-T, Lin H-Y. Geometric constraints for robot navigation using omnidirectional camera. In: IEEE international conference on systems, man, and cybernetics (SMC). IEEE; 2012. p. 1724–9.Google Scholar
  99. 99.
    Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the KITTI vision benchmark suite. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), June 2012. IEEE; 2012.Google Scholar
  100. 100.
    Hartley R, Zisserman A, Ebrary I. Multiple view geometry in computer vision, vol. 2. New York: Cambridge University Press; 2003.Google Scholar

Copyright information

© Springer Nature B.V. and People's Medical Publishing House 2018

Authors and Affiliations

  • Min-Liang Wang
    • 1
  • Yeoulin Ho
    • 2
  • Ramakanteswararao Beesetty
    • 3
  • Stephane Nicolau
    • 4
  1. 1.Taiwan Chin Yi University of Science and TechnologyTaichungTaiwan
  2. 2.American MOST CompanyNew YorkUSA
  3. 3.Dr. Rob CompanyNew YorkUSA
  4. 4.Long Distance Minimally Invasive Surgery CenterMokenaUSA

Personalised recommendations