Advertisement

Finite Element Analysis in Orthopedic Biomechanics Research

  • Meichao Zhang
  • Zhang Hao
  • Tan Tingsheng
Chapter

Dimensional Finite Element Modeling in Orthopedics

Orthopedic dimensional finite element model is biomechanical model objects created for clinical orthopedics with finite element calculation and computer simulation technology combined, which is one of the important means of orthopedic biomechanics research. Orthopedic biomechanics is to solve problems encountered by orthopedic surgeons and use the principles and methods of mathematics, physics, and engineering in clinical orthopedics, forming a spine biomechanics, artificial joints and joint biomechanics, sports and rehabilitation medicine, and tissue engineering research.

Specimen test is a traditional orthopedic biomechanics research method, which builds different models of human bone and joint specimens for different clinical problems and simulates human activities by mechanical loading test machine or other device, and then observes and analyzes the structural stability of the model, material strength, and power conduction by means...

References

  1. 1.
    Shizhen Z. New progresses in fundamental research of traumatic orthopedics. Chin J Orthop Trauma. 2002;4:81–3.Google Scholar
  2. 2.
    Ruokun H, Ming X, Wusheng K, et al. Research progress in digital orthopedics. Orthop J China. 2010;18:1003–5.Google Scholar
  3. 3.
    Hodler J, Peck D, Gilula LA. Midterm outcome after vertebroplasty: predictive value of technical and patient-related factors. Radiology. 2003;227:662–8.CrossRefGoogle Scholar
  4. 4.
    Lindsay R, Silverman S, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285:320–3.CrossRefGoogle Scholar
  5. 5.
    Uppin AA, Hirsch JA, Centenera LV, et al. Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology. 2003;226:119–24.CrossRefGoogle Scholar
  6. 6.
    Belkoff SM, Mathis JM, Jasper LE, et al. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine. 2001;26:1537–41.CrossRefGoogle Scholar
  7. 7.
    Berlemann U, Ferguson SJ, Nolte LP, et al. Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg (Br). 2002;84:748–52.CrossRefGoogle Scholar
  8. 8.
    Baroud G, Nemes J, Heini P, et al. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J. 2003;1:421–6.CrossRefGoogle Scholar
  9. 9.
    Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine. 2003;28:991–6.PubMedGoogle Scholar
  10. 10.
    Villarraga ML, Bellezza AJ, Harrigan TP, et al. The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. J Spinal Disord Tech. 2005;18:84–91.CrossRefGoogle Scholar
  11. 11.
    Liebschner MA, Rosenberg WS, Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine. 2001;26:1547–54.CrossRefGoogle Scholar
  12. 12.
    Keyak JH, Meagher JM, Skinner HB, et al. Automated three-dimensional finite element modeling of bone: a new method. J Biomed Eng. 1990;12:389–97.CrossRefGoogle Scholar
  13. 13.
    Panjabi MM, Crisco JJ, Vasavada A, et al. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine. 2001;26:2692–700.CrossRefGoogle Scholar
  14. 14.
    Nolte LP, Panjabi MM, Oxland TR. Biomechanical properties of lumbar spinal ligaments. In: Heimke G, Soltesz U, AJC L, editors. Clinical implant materials, advances in biomaterials, vol. 9. Heidelberg: Elsevier; 1990. p. 663–8.Google Scholar
  15. 15.
    Shizhen Z. Digitization of medical biomechanical parameters and digital medicine. J Med Biomech. 2006;21(3):169–71.Google Scholar
  16. 16.
    Meichao Z, Hong X, Jihong F. Reconstruction of the human skeleton finite element model. Chin J Clin Anat. 2003;21(5):531–2.Google Scholar
  17. 17.
    Lengsfeld M, Schmitt J, Alter P, et al. Comparison of geometry-based and CT voxel-based finite element modeling and experimental validation. Med Eng Phys. 1998;20(7):515–22.CrossRefGoogle Scholar
  18. 18.
    Hazinski MF, Nadkarni VM, Hickey RW, et al. Major changes in the 2005 AHA Guidelines for CPR and ECC: reaching the tipping point for change. Circulation. 2005;112(24 suppl):IV206.PubMedGoogle Scholar
  19. 19.
    He Z, Guo X, Dong C, et al. Oxygen metabolism during CPR in critically ill patients. Chin J Emerg Med. 2001;10(6):376.Google Scholar
  20. 20.
    Cai XH, Liu ZC, Yu Y, et al. Evaluation of biomechanical properties of anterior atlantoaxial transarticular locking plate system using three-dimensional finite element analysis[J]. Eur Spine J. 2013;22(12):2686–94.CrossRefGoogle Scholar
  21. 21.
    Kim YH, Khuyagbaatar B, Kim K. Biomechanical effects of spinal cord compression due to ossification of posterior longitudinal ligament and ligamentum flavum: a finite element analysis [J]. Med Eng Phys. 2013;35(9):1266–71.CrossRefGoogle Scholar
  22. 22.
    Rohlmann A, Burra NK, Zander T, Bergmann G. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J. 2007;16:1223–31.CrossRefGoogle Scholar
  23. 23.
    Heini PF, Walchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J. 2000;9:445–50.CrossRefGoogle Scholar
  24. 24.
    Wei Q, Wei L, Yabo Y. Three dimensional finite element analysis of stress distribution on continuously varying of length of pedicle screw [J]. J Med Biomech. 2010;25(3):206–11.Google Scholar
  25. 25.
    Qin L. Mechanical stimulation enhances osteogenesis and bone generation [J]. J Med Biomech. 2012;02:129–32.Google Scholar
  26. 26.
    Jin D, Chen J, Jiang J, et al. The application of Orion lock anterior cervical plate system in cervical surgery [J]. Chin J Orthop Trauma. 1999;19(6):328–31.Google Scholar
  27. 27.
    Tian W, Liu B, Hu L, et al. Cervical disease treatment by titanium plate with coral artificial or autogenous bone anterior fixation [J]. Traumatol Orthop Q. 1997;26(4):201–4.Google Scholar
  28. 28.
    Yuan W, Jia L, Dai L, et al. AO titanium locking plate in anterior cervical fixation: a preliminary report [J]. Chin J Spine Spinal Cord. 1996;6(4):161–3.Google Scholar
  29. 29.
    Ng HW, Teo EC. Nonlinear finite-element analysis of the lower cervical spine (C4–C6) under axial loading. J Spinal Disord. 2001;14:201–10.CrossRefGoogle Scholar
  30. 30.
    Zhang QH, Teo EC, Ng HW, Lee VS. Finite element analysis of moment-rotation relationships for human cervical spine. J Biomech. 2006;39:189–93.CrossRefGoogle Scholar
  31. 31.
    Panjabi MM. Cervical spine models for biomechanical research. Spine. 1998;23:2684–700.CrossRefGoogle Scholar
  32. 32.
    Panjabi M, Dvorak J, Duranceau J, et al. Three-dimensional movements of the upper cervical spine. Spine. 1988;13:726–30.CrossRefGoogle Scholar
  33. 33.
    Lin EP, Ekholm S, Hiwatashi A, et al. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. Am J Neuroradiol. 2004;25:175–80.PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. and People's Medical Publishing House 2018

Authors and Affiliations

  • Meichao Zhang
    • 1
  • Zhang Hao
    • 2
  • Tan Tingsheng
    • 3
  1. 1.Anatomy DepartmentSchool of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
  2. 2.Department of Spinal SurgeryPeople’s Hospital of LongHua DistrictShenzhen CityChina
  3. 3.Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan ShiGuangdong ShengChina

Personalised recommendations