Advertisement

Protein Dynamics: From Structure to Function

  • Marcus B. Kubitzki
  • Bert L. de Groot
  • Daniel SeeligerEmail author
Chapter

Abstract

Understanding protein function requires detailed knowledge about protein dynamics , i.e. the different conformational states the system can adopt. Despite substantial experimental progress, simulation techniques such as molecular dynamics (MD) currently provide the only routine means to obtain dynamical information at an atomic level on timescales of nano- to microseconds. Even with the current development of computational power, sampling techniques beyond MD are necessary to enhance conformational sampling of large proteins and assemblies thereof. The use of collective coordinates has proven to be a promising means in this respect, either as a tool for analysis or as part of new sampling algorithms. Starting from MD simulations, several enhanced sampling algorithms for biomolecular simulations are reviewed in this chapter. Examples are given throughout illustrating how consideration of the dynamic properties of a protein sheds light on its function.

Keywords

Protein dynamics Molecular dynamics Conformational sampling Collective coordinates Collective degrees of freedom Enhanced sampling Replica exchange Principal component analysis/PCA Essential dynamics TEE-REX CONCOORD/tCONCOORD Geometrical constraints 

References

  1. Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106:1589–1615PubMedPubMedCentralCrossRefGoogle Scholar
  2. Affentranger R, Tavernelli I, di Iorio E (2006) A novel Hamiltonian replica exchange MD protocol to enhance protein conformational space sampling. J Chem Theory Comput 2:217–228PubMedCrossRefGoogle Scholar
  3. Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17:412–425PubMedCrossRefGoogle Scholar
  4. Amadei A, Linssen ABM, de Groot BL et al (1996) An efficient method for sampling the essential subspace of proteins. J Biomol Struct Dyn 13:615–626PubMedCrossRefGoogle Scholar
  5. Amadei A, de Groot BL, Ceruso M-A et al (1999) A kinetic model for the internal motions of proteins: Diffusion between multiple harmonic wells. Proteins 35:283–292PubMedCrossRefGoogle Scholar
  6. Anderson HC (1980) Molecular dynamics simulations at constant pressureand/or temperature. J Chem Phys 72:2384–2393CrossRefGoogle Scholar
  7. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230PubMedCrossRefGoogle Scholar
  8. Austin RH, Beeson KW, Eisenstein L et al (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14(24):5355–5373PubMedCrossRefGoogle Scholar
  9. Bahar I, Erman B, Haliloglu T et al (1997) Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations. Biochemistry 36:13512–13523PubMedCrossRefGoogle Scholar
  10. Bartels C, Karplus M (1998) Probability distributions for complex systems: adaptive umbrella sampling of the potential energy. J Phys Chem B 102:865–880CrossRefGoogle Scholar
  11. Berendsen HJC, Postma JPM, di Nola A et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  12. Berg BA, Celik T (1992) New approach to spin-glass simulations. Phys Rev Lett 69:2292–2295PubMedCrossRefGoogle Scholar
  13. Berg BA, Neuhaus T (1991) Multicanonical algorithms for first-order phase transitions. Phys Lett 267:249–253CrossRefGoogle Scholar
  14. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. WH Freeman and Co., New YorkGoogle Scholar
  15. Bond PJ, Holyoake J, Ivetac A et al (2007) Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Struct Biol 157:593–605PubMedCrossRefGoogle Scholar
  16. Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci 80:6571–6575PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brooks BR, Bruccoleri RE, Olafson BD et al (1983) CHARMM: a program for macromolecular energy minimization and dynamics calculations. J Comp Chem 4:187–217CrossRefGoogle Scholar
  18. Burykin A, Warshel A (2003) What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Biophys J 85:3696–3706PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cecchini M, Rao F, Seeber M et al (2004) Replica exchange molecular dynamics simulations of amyloid peptide aggregation. J Chem Phys 121:10748–10756PubMedCrossRefGoogle Scholar
  20. Chakrabarti N, Tajkhorshid E, Roux B et al (2004) Molecular basis of proton blockage in aquaporins. Structure 12:65–74PubMedCrossRefGoogle Scholar
  21. Chaudhri A, Zarranga IE, Kamerzell TJ et al (2012) Coarse-grained modeling of the self-association of therapeutic monoclonal antibodies. J Phys Chem B 116:8045–8057PubMedCrossRefGoogle Scholar
  22. Chen H, Wu Y, Voth GA (2006) Origins of proton transport behavior from selectivity domain mutations of the aquaporin-1 channel. Biophys J 90:L73–L75PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cheng X, Cui G, Hornak V et al (2005) Modified replica exchange simulation for local structure refinement. J Phys Chem B 109:8220–8230PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chodera JD, Swope WC, Pitera JW et al (2007) Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J Chem Theory Comput 3:26–41PubMedCrossRefGoogle Scholar
  25. Christen M, van Gunsteren WF (2006) Multigraining: an algorithm for simultaneous fine-grained and coarse-grained simulation of molecular systems. J Chem Phys 124:154106PubMedCrossRefGoogle Scholar
  26. Cook A, Fernandez E, Lindner D et al (2005) The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Mol Cell 18:355–357PubMedCrossRefGoogle Scholar
  27. Currie MG, Fok KF, Kato J et al (1992) Guanylin: an endogenous activator of intestinal guanylate cyclise. Proc Natl Acad Sci 89:947–951PubMedPubMedCentralCrossRefGoogle Scholar
  28. de Groot BL, Grubmüller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357PubMedCrossRefGoogle Scholar
  29. de Groot BL, Amadei A, Scheek RM et al (1996a) An extended sampling of the configurational space of HPr from E. coli. Proteins 26:314–322PubMedCrossRefGoogle Scholar
  30. de Groot BL, Amadei A, van Aalten DMF et al (1996b) Towards an exhaustive sampling of the configurational spaces of the two forms of the peptide hormone guanylin. J Biomol Str Dyn 13:741–751CrossRefGoogle Scholar
  31. de Groot BL, van Aalten DMF, Scheek RM et al (1997) Prediction of protein conformational freedom from distance constraints. Proteins 29:240–251PubMedCrossRefGoogle Scholar
  32. de Groot BL, Hayward S, van Aalten DMF et al (1998) Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data. Proteins 31:116–127PubMedCrossRefGoogle Scholar
  33. de Groot BL, Vriend G, Berendsen HJC (1999) Conformational changes in the chaperonin GroEL: new insights into the allosteric mechanism. J Mol Biol 286:1241–1249PubMedCrossRefGoogle Scholar
  34. de Groot BL, Engel A, Grubmüller H (2001) A refined structure of human aquaporin-1. FEBS Lett 504:206–211PubMedCrossRefGoogle Scholar
  35. de Groot BL, Frigato T, Helms V et al (2003) The mechanism of proton exclusion in the aquaporin-1 water channel. J Mol Biol 333:279–293PubMedCrossRefGoogle Scholar
  36. Dixon MM, Nicholson H, Shewchuk L et al (1992) Structure of a hinge-bending bacteriophage T4 lysozyme mutant Ile3 → Pro. J Mol Biol 227:917–933PubMedCrossRefGoogle Scholar
  37. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New YorkGoogle Scholar
  38. Faber HR, Matthews BW (1990) A mutant T4 lysozyme displays five different crystal conformations. Nature 348:263–266PubMedCrossRefGoogle Scholar
  39. Frauenfelder H, Leeson DT (1998) The energy landscape in non-biological and biological molecules. Nat Struct Biol 5:757–759PubMedCrossRefGoogle Scholar
  40. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603PubMedCrossRefGoogle Scholar
  41. Fu D, Libson A, Miercke LJ et al (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486PubMedCrossRefGoogle Scholar
  42. Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J Chem Phys 116:9058–9067CrossRefGoogle Scholar
  43. García AE (1992) Large-amplitude nonlinear motions in proteins. Phys Rev Lett 68:2696–2699PubMedCrossRefGoogle Scholar
  44. García AE, Onuchic JN (2003) Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc Natl Acad Sci 100:13898–13903PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gō N, Noguti T, Nishikawa T (1983) Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci 80:3696–3700PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gerstein M, Lesk AM, Chothia C (1994) Structural mechanisms for domain movements in proteins. Biochemistry 33:6739–6749PubMedCrossRefGoogle Scholar
  47. Gosh A, Rapp CS, Friesner RA (1998) Generalized Born model based on a surface integral formulation. J Phys Chem B 102:10983–10990CrossRefGoogle Scholar
  48. Grubmüller H (1995) Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys Rev E 52:2893–2906CrossRefGoogle Scholar
  49. Hansmann UHE (1997) Effective way for determination of multicanonical weights. Phys Rev E 56:6200–6203CrossRefGoogle Scholar
  50. Hayward S, Kitao A, Gō N (1995) Harmonicity and anharmonicity in protein dynamics: a normal mode analysis and principal component analysis. Proteins 23:177–186PubMedCrossRefGoogle Scholar
  51. He J, Zhang Z, Shi Y et al (2003) Efficiently explore the energy landscape of proteins in molecular dynamics simulations by amplifying collective motions. J Chem Phys 119:4005–4017CrossRefGoogle Scholar
  52. Hockney RW, Goel SP, Eastwood JW (1973) 10000 particle molecular dynamics model with long-range forces. Chem Phys Lett 21:589–591CrossRefGoogle Scholar
  53. Huang J, Lopes PEM, Roux B et al (2014) Recent advances in polarizable force fields for macromolecules: microsecond simulations of proteins using the classical Drude oscillator model. J Phys Chem Lett 5:3144–3150PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci 105:1198–1203PubMedPubMedCentralCrossRefGoogle Scholar
  55. Iba Y (2001) Extended ensemble Monte Carlo. Int J Mod Phys C 12:623–656CrossRefGoogle Scholar
  56. Ilan B, Tajkhorshid E, Schulten K et al (2004) The mechanism of proton exclusion in aquaporin channels. Proteins 55:223–228PubMedCrossRefGoogle Scholar
  57. Jean-Charles A, Nicholls A, Sharp K et al (1991) Electrostatic contributions to solvation energies: comparison of free energy perturbation and continuum calculations. J Am Chem Soc 113:1454–1455CrossRefGoogle Scholar
  58. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  59. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  60. Karplus M, Gao YQ (2004) Biomolecular motors: the F1-ATPase paradigm. Curr Opin Struct Biol 14:250–259PubMedCrossRefGoogle Scholar
  61. Karplus M, Kushick JN (1981) Method for estimating the configurational entropy of macromolecules. Macromolecules 14:325–332CrossRefGoogle Scholar
  62. Kempf JG, Loria JP (2003) Protein dynamics from solution NMR theory and applications. Cell Biochem Biophys 37:187–211PubMedCrossRefGoogle Scholar
  63. Kitao A, Gō N (1999) Investigating protein dynamics in collective coordinate space. Curr Opin Struct Biol 9:143–281CrossRefGoogle Scholar
  64. Kitao A, Hirata F, Gō N (1991) The effects of solvent on the conformation and the collective motions of proteins—normal mode analysis and molecular-dynamics simulations of melittin in water and vacuum. Chem Phys 158:447–472CrossRefGoogle Scholar
  65. Kitao A, Hayward S, Gō N (1998) Energy landscape of a native protein: jumping-among-minima model. Proteins 33:496–517PubMedCrossRefGoogle Scholar
  66. Kokubo H, Okamoto Y (2004) Prediction of membrane protein structures by replica-exchange Monte Carlo simulations: case of two helices. J Chem Phys 120:10837–10847PubMedCrossRefGoogle Scholar
  67. Kubitzki MB, de Groot BL (2007) Molecular dynamics simulations using temperature-enhanced essential dynamics replica exchange. Biophys J 92:4262–4270PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kubitzki MB, de Groot BL (2008) The atomistic mechanism of conformational transition in adenylate kinase: a TEE-REX molecular dynamics study. Structure 16(8):1175–1182PubMedCrossRefGoogle Scholar
  69. Kumar S, Bouzida D, Swendsen RH et al (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021CrossRefGoogle Scholar
  70. Kumar S, Payne PW, Vásquez M (1996) Method for free-energy calculations using iterative techniques. J Comput Chem 17:1269–1275CrossRefGoogle Scholar
  71. Kuroki R, Weaver LH, Matthews BW (1993) A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. Science 262:2030–2033PubMedCrossRefGoogle Scholar
  72. Levitt M, Sander C, Stern PS (1983) Normal-mode dynamics of a protein: bovine pancreatic trypsin inhibitor. Int J Quant Chem Quant Biol Symp 10:181–199Google Scholar
  73. Levy RM, Karplus M, Kushick J et al (1984a) Evaluation of the configurational entropy for proteins: application to molecular dynamics of an α-helix. Macromolecules 17:1370–1374CrossRefGoogle Scholar
  74. Levy RM, Srinivasan AR, Olsen WK et al (1984b) Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers 23:1099–1112PubMedCrossRefGoogle Scholar
  75. Liu P, Kim B, Friesner RA et al (2005) Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proc Natl Acad Sci 102:13749–13754PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lou H, Cukier RI (2006) Molecular dynamics of apo-adenylate kinase: a distance replica exchange method for the free energy of conformational fluctuations. J Phys Chem B 110:24121–24137PubMedCrossRefGoogle Scholar
  77. Luo R, David L, Gilson ML (2002) Accelerated Poisson-Boltzmann calculations for static and dynamic systems. J Comput Chem 23:1244–1253PubMedCrossRefGoogle Scholar
  78. Lyman E, Zuckerman DM (2006) Ensemble-based convergence analysis of biomolecular trajectories. Biophys J 91:164–172PubMedPubMedCentralCrossRefGoogle Scholar
  79. Maragakis P, Karplus M (2005) Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. J Mol Biol 352:807–822PubMedCrossRefGoogle Scholar
  80. Marinari E, Parisi G (1992) Simulated tempering: a new Monte Carlo scheme. Europhys Lett 19:451–458CrossRefGoogle Scholar
  81. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760CrossRefGoogle Scholar
  82. Matthews BW, Remington SJ (1974) The three dimensional structure of the lysozyme from bacteriophage T4. Proc Natl Acad Sci 71:4178–4182PubMedPubMedCentralCrossRefGoogle Scholar
  83. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590PubMedCrossRefGoogle Scholar
  84. Mitsutake A, Sugita Y, Okamoto Y (2001) Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers 60:96–123PubMedCrossRefGoogle Scholar
  85. Moffat K (2003) The frontiers of time-resolved macromolecular crystallography: movies and chirped X-ray pulses. Faraday Discuss 122:65–77PubMedCrossRefGoogle Scholar
  86. Murata K, Mitsuoka K, Walz T et al (2000) Structural determinants of water permeation through Aquaporin-1. Nature 407:599–605PubMedCrossRefGoogle Scholar
  87. Müller CW, Schulz GE (1992) Structure of the complex between adenylate kinase from Eschericia coli and the inhibitor Ap5A refined at 19 Å resolution: a model for a catalytic transition state. J Mol Biol 224:159–177PubMedCrossRefGoogle Scholar
  88. Müller CW, Schlauderer G, Reinstein J et al (1996) Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure 4:147–156PubMedCrossRefGoogle Scholar
  89. Nguyen PH, Mu Y, Stock G (2005) Structure and energy landscape of a photoswitchable peptide: a replica exchange molecular dynamics study. Proteins 60:485–494PubMedCrossRefGoogle Scholar
  90. Nose S (1984) A unified formulation of the constant temperature molecular dynamics method. J Chem Phys 81:511–519CrossRefGoogle Scholar
  91. Pitera JW, Swope W (2003) Understanding folding and design: replica-exchange simulations of “Trp-cage” miniproteins. Proc Natl Acad Sci 100:7587–7592PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rao F, Caflisch A (2003) Replica exchange molecular dynamics simulations of reversible folding. J Chem Phys 119:4035–4042CrossRefGoogle Scholar
  93. Romo TD, Clarage JB, Sorensen DC et al (1995) Automatic identification of discrete substates in proteins: singular value decomposition analysis of time-averaged crystallographic refinements. Proteins 22:311–321PubMedCrossRefGoogle Scholar
  94. Saunders MG, Voth GA (2013) Coarse-graining methods for computational biology. Ann Rev Biophys 42:73–93CrossRefGoogle Scholar
  95. Schotte F, Lim M, Jackson TA et al (2003) Watching a protein as it functions with 150 ps time-resolved X-ray crystallography. Science 300:1944–1947PubMedCrossRefGoogle Scholar
  96. Seeliger D, Haas J, de Groot BL (2007) Geometry-based sampling of conformational transitions in proteins. Structure 15:1482–1492PubMedCrossRefGoogle Scholar
  97. Seibert MM, Patriksson A, Hess B et al (2005) Reproducible polypeptide folding and structure prediction using molecular dynamics simulations. J Mol Biol 354:173–183PubMedCrossRefGoogle Scholar
  98. Shapiro YE, Meirovitch E (2006) Activation energy of catalysis-related domain motion in E. coli adenylate kinase. J Phys Chem B 110:11519–11524PubMedCrossRefGoogle Scholar
  99. Shapiro YE, Kahana E, Tugarinov V et al (2002) Domain flexibility in ligand-free and inhibitor bound Eschericia coli adenylate kinase based on a mode-coupling analysis of 15N spin relaxation. Biochemistry 41:6271–6281PubMedCrossRefGoogle Scholar
  100. Smith GR, Bruce AD (1996) Multicanonical Monte Carlo study of solid-solid phase coexistence in a model colloid. Phys Rev E 53:6530–6543CrossRefGoogle Scholar
  101. Snow C, Qi G, Hayward S (2007) Essential dynamics sampling study of adenylate kinase: comparison to citrate synthase and implication for the hinge and shear mechanisms of domain motion. Proteins 67:325–337PubMedCrossRefGoogle Scholar
  102. Still WC, Tempczyk A, Hawley RC et al (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129CrossRefGoogle Scholar
  103. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151CrossRefGoogle Scholar
  104. Sugita Y, Kitao A, Okamoto Y (2000) Multidimensional replica-exchange method for free-energy calculations. J Chem Phys 113:6042–6051CrossRefGoogle Scholar
  105. Suhre K, Sanejouand YH (2004a) ElNemo: a normal mode web-server for protein movement analysis and the generation of templates for molecular replacement. Nucl Acids Res 32:610–614CrossRefGoogle Scholar
  106. Suhre K, Sanejouand YH (2004b) On the potential of normal mode analysis for solving difficult molecular replacement problems. Act Cryst D 60:796–799CrossRefGoogle Scholar
  107. Sui H, Han B-G, Lee JK et al (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878PubMedCrossRefGoogle Scholar
  108. Tai K (2004) Conformational sampling for the impatient. Biophys Chem 107:213–220PubMedCrossRefGoogle Scholar
  109. Tajkhorshid E, Nollert P, Jensen MØ et al (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530PubMedCrossRefGoogle Scholar
  110. Teeter MM, Case DA (1990) Harmonic and quasi harmonic descriptions of crambin. J Phys Chem 94:8091–8097CrossRefGoogle Scholar
  111. Temiz NA, Meirovitch E, Bahar I (2004) Eschericia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling 15N-NMR relaxation data. Proteins 57:468–480PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys Rev Lett 77:186–195CrossRefGoogle Scholar
  113. Tugarinov V, Shapiro YE, Liang Z et al (2002) A novel view of domain flexibility in E coli adenylate kinase based on structural mode-coupling 15N NMR spin relaxation. J Mol Biol 315:155–170PubMedCrossRefGoogle Scholar
  114. Van Aalten DMF, Amadei A, Vriend G et al (1995a) The essential dynamics of thermolysin—confirmation of hinge-bending motion and comparison of simulations in vacuum and water. Prot Eng 8:1129–1136CrossRefGoogle Scholar
  115. Van Aalten DMF, Findlay JBC, Amadei A et al (1995b) Essential dynamics of the cellular retinol binding protein—evidence for ligand induced conformational changes. Prot Eng 8:1129–1136CrossRefGoogle Scholar
  116. Van Gunsteren WF, Berendsen HJC (1987) Groningen molecular simulation (GROMOS) library manual. Biomos, GroningenGoogle Scholar
  117. Van Gunsteren WF, Berendsen HJC (1990) Computer-simulation of molecular-dynamics—methodology, applications, and perspectives in chemistry. Angew Chem Int Edit Engl 29:992–1023CrossRefGoogle Scholar
  118. Warshel A, Kato M, Pisliakov AV (2007) Polarizable force fields: history test cases and prospects. J Chem Theory Comput 3:2034–2045PubMedCrossRefGoogle Scholar
  119. Weiner SJ, Kollman PA, Nguyen DT et al (1986) An all atom force field for simulations of proteins and nucleic acids. J Comp Chem 7:230–252CrossRefGoogle Scholar
  120. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683PubMedCrossRefGoogle Scholar
  121. Whitford PC, Miyashita O, Levy Y et al (2007) Conformational transitions of adenylate kinase: switching by cracking. J Mol Biol 366:1661–1671PubMedCrossRefGoogle Scholar
  122. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric Gro-EL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750PubMedCrossRefGoogle Scholar
  123. Zachariae U, Grubmüller H (2006) A highly strained nuclear conformation of the exportin Cse1p revealed by molecular dynamics simulations. Structure 14:1469–1478PubMedCrossRefGoogle Scholar
  124. Zhang X-J, Wozniak JA, Matthews BW (1995) Protein flexibility and adaptability seen in 25 crystal forms of T4 lysozyme. J Mol Biol 250:527–552PubMedCrossRefGoogle Scholar
  125. Zhang Z, Shi Y, Liu H (2003) Molecular dynamics simulations of peptides, and proteins with amplified collective motions. Biophys J 84:3583–3593PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zheng W, Brooks BR (2005) Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin. Biophys J 89(1):167–178PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zheng W, Doniach S (2003) A comparative study of motor-protein motions by using a simple elastic-network model. Proc Natl Acad Sci 100(23):13253–13258PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zhou R, Berne BJ, Germain R (2001) The free energy landscape for β-hairpin folding in explicit water. Proc Natl Acad Sci 98:14931–14936PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Marcus B. Kubitzki
    • 1
  • Bert L. de Groot
    • 1
  • Daniel Seeliger
    • 2
    Email author
  1. 1.Computational Biomolecular Dynamics GroupMax Planck Institute for Biophysical ChemistryGoettingenGermany
  2. 2.Medicinal ChemistryBoehringer Ingelheim Pharma GmbH & Co KGBiberachGermany

Personalised recommendations