Aquaporins pp 35-50 | Cite as

The Evolutionary Aspects of Aquaporin Family

  • Kenichi IshibashiEmail author
  • Yoshiyuki Morishita
  • Yasuko Tanaka
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 969)


Aquaporins (AQPs ) are a family of transmembrane proteins present in almost all species including virus. They are grossly divided into three subfamilies based on the sequence around a highly conserved pore-forming NPA motif: (1) classical water-selective AQP (CAQP), (2) glycerol-permeable aquaglyceroporin (AQGP) and (3) AQP super-gene channel, superaquaporin (SAQP). AQP is composed of two tandem repeats of conserved three transmembrane domains and a NPA motif. AQP ancestors probably started in prokaryotes by the duplication of half AQP genes to be diversified into CAQPs or AQGPs by evolving a subfamily-specific carboxyl-terminal NPA motif. Both AQP subfamilies may have been carried over to unicellular eukaryotic ancestors, protists and further to multicellular organisms. Although fungus lineage has kept both AQP subfamilies, the plant lineage has lost AQGP after algal ancestors with extensive diversifications of CAQPs into PIP, TIP, SIP, XIP, HIP and LIP with a possible horizontal transfer of NIP from bacteria. Interestingly, the animal lineage has obtained new SAQP subfamily with highly deviated NPA motifs, especially at the amino-terminal halves in both prostomial and deuterostomial animals. The prostomial lineage has lost AQGP after hymenoptera, while the deuterostomial lineage has kept all three subfamilies up to the vertebrate with diversified CAQPs (AQP0, 1, 2, 4, 5, 6, 8) and AQGPs (AQP3, 7, 9, 10) with limited SAQPs (AQP11, 12) in mammals. Whole-genome duplications, local gene duplications and horizontal gene transfers may have produced the AQP diversity with adaptive selections and functional alternations in response to environment changes. With the above evolutionary perspective in mind, the function of each AQP could be speculated by comparison among species to get new insights into physiological roles of AQPs . This evolutionary guidance in AQP research will lead to deeper understandings of water and solute homeostasis.


MIP family Classical AQP Aquaglyceroporin Super-gene family Internal tandem repeat 



This work was supported by JSPS KAKENHI Grant Number 24591243 and 15K09302.


  1. 1.
    Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840(5):1468–1481PubMedCrossRefGoogle Scholar
  2. 2.
    Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141PubMedCrossRefGoogle Scholar
  3. 3.
    Agre P (2004) Aquaporin water channels (Nobel lecture). Angew Chem-Int Ed 43:4278–4290CrossRefGoogle Scholar
  4. 4.
    Ahmadpour D, Geijer C, Tamas MJ, Lindkvist-Petersson K, Hohmann S (2014) Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins. Biochim Biophys Acta 1840:1482–1491PubMedCrossRefGoogle Scholar
  5. 5.
    Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwaite JH (2011) Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188:799–808PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197PubMedCrossRefGoogle Scholar
  7. 7.
    Bahamontes-Rosa N, Wu B, Beitz E, Kremsner PG, Kun JF (2007) Limited genetic diversity of the Plasmodium falciparum aquaglyceroporin gene. Mol Biochem Parasitol 156:255–257PubMedCrossRefGoogle Scholar
  8. 8.
    Ball A, Campbell EM, Jacob J, Hoppler S, Bowman AS (2009) Identification, functional characterization and expression patterns of a water-specific aquaporin in the brown dog tick, Rhipicephalus sanguineus. Insect Biochem Mol Biol 39:105–112PubMedCrossRefGoogle Scholar
  9. 9.
    Beitz E (2006) Aquaporin water and solute channels from malaria parasites and other pathogenic protozoa. Chem Med Chem 1:587–592PubMedCrossRefGoogle Scholar
  10. 10.
    Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci U S A 103:269–274PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Benga G (2012) On the definition, nomenclature and classification of water channel proteins (aquaporins and relatives). Mol Asp Med 33(5–6):514–517CrossRefGoogle Scholar
  12. 12.
    Benoit JB, Hansen IA, Szuter EM, Drake LL, Burnett DL, Attardo GM (2014) Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods. J Comp Physiol B 184:811–825PubMedCrossRefGoogle Scholar
  13. 13.
    Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noel B, Bento P, Da Silva C, Labadie K, Alberti A et al (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun 5:3657PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:306–317PubMedCrossRefGoogle Scholar
  15. 15.
    Bienert GP, Desguin B, Chaumont F, Hols P (2013) Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria. Biochemist J454:559–570CrossRefGoogle Scholar
  16. 16.
    Brunet FG, Crollius HR, Paris M, Aury JM, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M (2006) Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol 23:1808–1816PubMedCrossRefGoogle Scholar
  17. 17.
    Calamita G, Bishai WR, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J Biol Chem 270:29063–29066PubMedCrossRefGoogle Scholar
  18. 18.
    Campbell EM, Ball A, Hoppler S, Bowman AS (2008) Invertebrate aquaporins: a review. J Comp Physiol B 178(8):935–955PubMedCrossRefGoogle Scholar
  19. 19.
    Canestro C, Albalat R, Irimia M, Garcia-Fernandez J (2013) Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Semin Cell Dev Biol 24:83–94PubMedCrossRefGoogle Scholar
  20. 20.
    Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354PubMedCrossRefGoogle Scholar
  21. 21.
    Czyzewski BK, Wang DN (2012) Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483(7390):494–497PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Danielson JA, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Danielson JA, Johanson U (2010) Phylogeny of major intrinsic proteins. Adv Exp Med Biol 679:9–31Google Scholar
  24. 24.
    Donoghue PC, Purnell MA (2005) Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20:312–319PubMedCrossRefGoogle Scholar
  25. 25.
    Drake LL, Rodriguez SD, Hansen IA (2015) Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti. Sci Rep 5:7795PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Fadiel A, Isokpehi RD, Stambouli N, Hamza A, Benammar-Elgaaied A, Scalise TJ (2009) Protozoan parasite aquaporins. Expert Rev Proteomics 6:199–211PubMedCrossRefGoogle Scholar
  27. 27.
    Finn RN, Cerda J (2015) Evolution and functional diversity of aquaporins. Biol Bull 229:6–23PubMedCrossRefGoogle Scholar
  28. 28.
    Finn RN, Chauvigne F, Hlidberg JB, Cutler CP, Cerda J (2014) The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation. PLoS One 9(11):e113686PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Finn RN, Chauvigne F, Stavang JA, Belles X, Cerda J (2015) Insect glycerol transporters evolved by functional co-option and gene replacement. Nat Commun 6:7814PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Froger A, Clemens D, Kalman K, Nemeth-Cahalan KL, Schilling TF, Hall JE (2010) Two distinct aquaporin 0 s required for development and transparency of the zebrafish lens. Invest Ophthalmol Vis Sci 51:6582–6592PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Fu D, Lu M (2007) The structural basis of water permeation and proton exclusion in aquaporins. Mol Membr Biol 24:366–374PubMedCrossRefGoogle Scholar
  32. 32.
    Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486PubMedCrossRefGoogle Scholar
  33. 33.
    Gazzarrini S, Kang M, Epimashko S, Van Etten JL, Dainty J, Thiel G, Moroni A (2006) Chlorella virus MT325 encodes water and potassium channels that interact synergistically. Proc Natl Acad Sci U S A 103(14):5355–5360PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788(6):1213–1228PubMedCrossRefGoogle Scholar
  35. 35.
    Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197PubMedCrossRefGoogle Scholar
  36. 36.
    Grohme MA, Mali B, Wełnicz W, Michel S, Schill RO, Frohme M (2013) The aquaporin channel repertoire of the tardigrade Milnesium tardigradum. Bioinf Biol Insight 7:153–165CrossRefGoogle Scholar
  37. 37.
    Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:Art. no. 134Google Scholar
  38. 38.
    Gupta AB, Verma RK, Agarwal V, Vajpai M, Bansal V, Sankararamakrishnan R (2012) MIPModDB: a central resource for the superfamily of major intrinsic proteins. Nucleic Acids Res 40:D362–D369PubMedCrossRefGoogle Scholar
  39. 39.
    Gustavsson S, Lebrun AS, Norden K, Chaumont F, Johanson U (2005) A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant Physiol 139(1):287–295PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hara-Chikuma M, Verkman AS (2006) Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins. Cell Mol Life Sci 63:1386–1392PubMedCrossRefGoogle Scholar
  41. 41.
    Hedfalk K, Bill RM, Mullins JG, Karlgren S, Filipsson C, Bergstrom J, Tamás MJ, Rydström J, Hohmann S (2004) A regulatory domain in the C-terminal extension of the yeast glycerol channel Fps1p. J Biol Chem 279:14954–14960PubMedCrossRefGoogle Scholar
  42. 42.
    Huang CG, Lamitina T, Agre P, Strange K (2007) Functional analysis of the aquaporin gene family in Caenorhabditis elegans. Am J Phys Cell Phys 292:C1867–C1873CrossRefGoogle Scholar
  43. 43.
    Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A 105:1198–1203PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108PubMedCrossRefGoogle Scholar
  45. 45.
    Ishibashi K (2006) Aquaporin subfamily with unusual NPA boxes. Biochim Biophys Acta 1758:989–993PubMedCrossRefGoogle Scholar
  46. 46.
    Ishibashi K (2009) New members of mammalian aquaporins: AQP10-AQP12. Handb Exp Pharmacol 190:251–262CrossRefGoogle Scholar
  47. 47.
    Ishibashi K, Sasaki S (1998) The dichotomy of MIP family suggests two separate origins of water channels. News Physiol Sci 13:137–142PubMedGoogle Scholar
  48. 48.
    Ishibashi K, Kuwahara M, Sasaki S (2000) Molecular biology of aquaporins. Rev Physiol Biochem Pharmacol 141:1–32PubMedCrossRefGoogle Scholar
  49. 49.
    Ishibashi K, Hara S, Kondo S (2009) Aquaporin water channels in mammals. Clin Exp Nephrol 13:107–117PubMedCrossRefGoogle Scholar
  50. 50.
    Ishibashi K, Kondo S, Hara S, Morishita Y (2011) The evolutionary aspects of aquaporin family. Am J Phys Regul Integr Comp Phys 300:R566–R576Google Scholar
  51. 51.
    Ishibashi K, Koike S, Kondo S, Hara S, Tanaka Y (2009) The role of a group III AQP, AQP11 in intracellular organelle homeostasis. J Med Investig 56(Suppl):312–317CrossRefGoogle Scholar
  52. 52.
    Itoh T, Rai T, Kuwahara M, Ko SB, Uchida S, Sasaki S, Ishibashi K (2005) Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun 330:832–838PubMedCrossRefGoogle Scholar
  53. 53.
    Izumi Y, Sonoda S, Yoshida H, Danks HV, Tsumuki H (2006) Role of membrane transport of water and glycerol in the freeze tolerance of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). J Insect Physiol 52:215–220PubMedCrossRefGoogle Scholar
  54. 54.
    Kataoka N, Miyake S, Azuma M (2009) Aquaporin and aquaglyceroporin in silkworms, differently expressed in the hindgut and midgut of Bombyx mori. Insect Mol Biol 18:303–314PubMedCrossRefGoogle Scholar
  55. 55.
    Kaufmann N, Mathai JC, Hill WG, Dow JA, Zeidel ML, Brodsky JL (2005) Developmental expression and biophysical characterization of a Drosophila melanogaster aquaporin. Am J Phys Cell Phys 289:C397–C407CrossRefGoogle Scholar
  56. 56.
    Kayingo G, Sirotkin V, Hohmann S, Prior BA (2004) Accumulation and release of the osmolyte glycerol is independent of the putative MIP channel Spac977.17p in Schizosaccharomyces pombe. Antonie Van Leeuwenhoek 85:85–92PubMedCrossRefGoogle Scholar
  57. 57.
    Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618PubMedCrossRefGoogle Scholar
  58. 58.
    Khabudaev KV, Petrova DP, Grachev MA, Likhoshway YV (2014) A new subfamily LIP of the major intrinsic proteins. BMC Genomics 15:173PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Konno N, Hyodo S, Yamaguchi Y, Matsuda K, Uchiyama M (2010) Vasotocin/V2-type receptor/aquaporin axis exists in African lungfish kidney but is functional only in terrestrial condition. Endocrinology 151:1089–1096PubMedCrossRefGoogle Scholar
  60. 60.
    Kozono D, Ding X, Iwasaki I, Meng X, Kamagata Y, Agre P, Kitagawa Y (2003) Functional expression and characterization of an archaeal aquaporin AqpM from Methanothermobacter marburgensis. J Biol Chem 278:10649–10656PubMedCrossRefGoogle Scholar
  61. 61.
    Kuraku S, Meyer A, Kuratani S (2009) Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 26:47–59PubMedCrossRefGoogle Scholar
  62. 62.
    Laize V, Tacnet F, Ripoche P, Hohmann S (2000) Polymorphism of Saccharomyces cerevisiae aquaporins. Yeast 16:897–903PubMedCrossRefGoogle Scholar
  63. 63.
    Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, Stroud RM (2005) Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 A. Proc Natl Acad Sci U S A 102:18932–18937PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lee SJ, Murphy CT, Kenyon C (2009) Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab 10:379–391PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840:1574–1582PubMedCrossRefGoogle Scholar
  66. 66.
    Lin X, Hong T, Mu Y, Torres J (2012) Identification of residues involved in water versus glycerol selectivity in aquaporins by differential residue pair co-evolution. Biochim Biophys Acta 1818:907–914PubMedCrossRefGoogle Scholar
  67. 67.
    Liu Y, Promeneur D, Rojek A, Kumar N, Frøkiaer J, Nielsen S, King LS, Agre P, Carbrey JM (2007) Aquaporin 9 is the major pathway for glycerol uptake by mouse erythrocytes, with implications for malarial virulence. Proc Natl Acad Sci U S A 104:12560–12564PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Macqueen DJ, Johnston IA (2014) A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc Biol Soc B 281:20132881CrossRefGoogle Scholar
  69. 69.
    Marjanovic Z, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiss M, Hampp R, Nehls U (2005) Aquaporins in poplar: what a difference a symbiont makes! Planta 222:258–268PubMedCrossRefGoogle Scholar
  70. 70.
    Martos-Sitcha JA, Campinho MA, Mancera JM, Martínez-Rodríguez G, Fuentes J (2015) Vasotocin and isotocin regulate aquaporin 1 function in the sea bream. J Exp Biol 218:684–693PubMedCrossRefGoogle Scholar
  71. 71.
    Meyers LA, Levin DA (2006) On the abundance of polyploids in flowering plants. Evolution 60:1198–1206PubMedCrossRefGoogle Scholar
  72. 72.
    Meyer A, Schart M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704PubMedCrossRefGoogle Scholar
  73. 73.
    Morinaga T, Nakakoshi M, Hirao A, Imai M, Ishibashi K (2002) Mouse aquaporin 10 gene (AQP10) is a pseudogene. Biochem Biophys Res Commun 294:630–634PubMedCrossRefGoogle Scholar
  74. 74.
    Morishita Y, Sakube Y, Sasaki S, Ishibashi K (2004) Aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms. J Pharmacol Sci 96:276–279PubMedCrossRefGoogle Scholar
  75. 75.
    Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman AS, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mukhopadhyay R, Bhattacharjee H, Rosen BP (2014) Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta 1840:1583–1591PubMedCrossRefGoogle Scholar
  77. 77.
    Nozaki K, Ishii D, Ishibashi K (2008) Intracellular aquaporins: clues for intracellular water transport? Pflugers Arch 456:701–707PubMedCrossRefGoogle Scholar
  78. 78.
    Ohta E, Itoh T, Nemoto T, Kumagai J, Ko SB, Ishibashi K, Ohno M, Uchida K, Ohta A, Sohara E, Uchida S, Sasaki S, Rai T (2009) Pancreas-specific aquaporin 12 null mice showed increased susceptibility to caerulein-induced acute pancreatitis. Am J Phys Cell Phys 297:C1368–C1378CrossRefGoogle Scholar
  79. 79.
    Pao GM, Wu LF, Johnson KD, Höfte H, Chrispeels MJ, Sweet G, Sandal NN, Saier MH Jr (1991) Evolution of the MIP family of integral membrane transport proteins. Mol Microbiol 5:33–37PubMedCrossRefGoogle Scholar
  80. 80.
    Park JH, Saier MH Jr (1996) Phylogenetic characterization of the MIP family of transmembrane channel proteins. J Membr Biol 153:171–180PubMedCrossRefGoogle Scholar
  81. 81.
    Pavlovic-Djuranovic S, Schultz JE, Beitz E (2003) A single aquaporin gene encodes a water/glycerol/urea facilitator in Toxoplasma gondii with similarity to plant tonoplast intrinsic proteins. FEBS Lett 555:500–504PubMedCrossRefGoogle Scholar
  82. 82.
    Perez Di Giorgio J, Soto G, Alleva K, Jozefkowicz C, Amodeo G, Muschietti JP, Ayub ND (2014) Prediction of aquaporin function by integrating evolutionary and functional analyses. J Membr Biol 247(2):107–125PubMedCrossRefGoogle Scholar
  83. 83.
    Philip BN, Kiss AJ, Lee RE Jr (2011) The protective role of aquaporins in the freeze-tolerant insect Eurosta solidaginis: functional characterization and tissue abundance of EsAQP1. J Exp Biol 214:848–857PubMedCrossRefGoogle Scholar
  84. 84.
    Philips J, Herskowitz I (1997) Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae. J Cell Biol 138:961–974PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Pommerrenig B, Diehn TA, Bienert GP (2015) Metalloido-porins: essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci 238:212–227PubMedCrossRefGoogle Scholar
  86. 86.
    Prak S, Hem S, Boudet J, Viennois G, Sommerer N, Rossignol M, Maurel C, Santoni V (2008) Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;1 in response to salt stress. Mol Cell Proteomics 7:1019–1037PubMedCrossRefGoogle Scholar
  87. 87.
    Promeneur D, Liu Y, Maciel J, Agre P, King LS, Kumar N (2007) Aquaglyceroporin PbAQP during intraerythrocytic development of the malaria parasite Plasmodium berghei. Proc Natl Acad Sci U S A 104:2211–2216PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Reizer J, Reizer A, Saier MH Jr (1993) The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev Biochem Mol Biol 28(3):235–257PubMedCrossRefGoogle Scholar
  89. 89.
    Rivera MC, Lake LA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155PubMedCrossRefGoogle Scholar
  90. 90.
    Rojek A, Praetorius J, Frøkiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70:301–327PubMedCrossRefGoogle Scholar
  91. 91.
    Sabir F, Loureiro-Dias MC, Prista C (2016) Comparative analysis of sequences, polymorphisms and topology of yeasts aquaporins and aquaglyceroporins. FEMS Yeast Res 16:fow025PubMedCrossRefGoogle Scholar
  92. 92.
    Soto G, Alleva K, Amodeo G, Muschietti J, Ayub ND (2012) New insight into the evolution of aquaporins from flowering plants and vertebrates: orthologous identification and functional transfer is possible. Gene 503:165–176PubMedCrossRefGoogle Scholar
  93. 93.
    Soupene E, King N, Lee H, Kustu S (2002) Aquaporin Z of Escherichia coli: reassessment of its regulation and physiological role. J Bacteriol 84:4304–4307CrossRefGoogle Scholar
  94. 94.
    Stavang J, Chauvigne C, Kongshaug H, Cerda J, Nilsen F, Finn RN (2015) Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genomics 16:618PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Suzuki M, Shibata Y, Ogushi Y, Okada R (2015) Molecular machinery for vasotocin-dependent transepithelial water movement in amphibians: aquaporins and evolution. Biol Bull 229:109–119PubMedCrossRefGoogle Scholar
  96. 96.
    Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Tanaka Y, Morishita Y, Ishibashi K (2015) Aquaporin10 is a pseudogene in cattle and their relatives. Biochem Biophys Rep 1:16–21Google Scholar
  98. 98.
    Tanghe A, Van Dijck P, Thevelein JM (2006) Why do microorganisms have aquaporins? Trends Microbiol 14:78–85PubMedCrossRefGoogle Scholar
  99. 99.
    Tchekneva EE, Khuchua Z, Davis LS, Kadkina V, Dunn SR, Bachman S, Ishibashi K, Rinchik EM, Harris RC, Dikov MM, Breyer MD (2008) A newly identified ENU-induced single amino acid mutation in aquaporin-11 resulting in perinatal kidney failure in mice. J Am Nephrol Soc 19:1955–1964CrossRefGoogle Scholar
  100. 100.
    Tingaud-Sequeira A, Calusinska M, Finn RN, Chauvigne F, Lozano J, Cerda J (2010) The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol Biol 10:38PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Verma RK, Prabh ND, Sankararamakrishnan R (2014) New subfamilies of major intrinsic proteins in fungi suggest novel transport properties in fungal channels: implications for the host-fungal interactions. BMC Evol Biol 14:173PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Verma RK, Prabh ND, Sankararamakrishnan R (2015) Intra-helical salt-bridge and helix destabilizing residues within the same helical turn: role of functionally important loop E half-helix in channel regulation of major intrinsic proteins. Biochim Biophys Acta 1848(6):1436–1449PubMedCrossRefGoogle Scholar
  103. 103.
    Viadiu H, Gonen T, Walz T (2007) Projection map of aquaporin-9 at 7 A resolution. J Mol Biol 367:80–88PubMedCrossRefGoogle Scholar
  104. 104.
    von Bulow J, Beitz E (2015) Number and regulation of protozoan aquaporins reflect environmental complexity. Biol Bull 229:38–46CrossRefGoogle Scholar
  105. 105.
    Wallace IS, Shakesby AJ, Hwang JH, Choi WG, Martínková N, Douglas AE, Roberts DM (2012) Acyrthosiphon pisum AQP2: a multifunctional insect aquaglyceroporin. Biochim Biophys Acta 1818:627–635PubMedCrossRefGoogle Scholar
  106. 106.
    Wang Y, Huang Y, Wang J, Cheng C, Huang W, Lu P, Xu YN, Wang P, Yan N, Shi Y (2009) Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462:467–472PubMedCrossRefGoogle Scholar
  107. 107.
    Yakata K, Hiroaki Y, Ishibashi K, Sohara E, Sasaki S, Mitsuoka K, Fujiyoshi Y (2007) Aquaporin-11 containing a divergent NPA motif has normal water channel activity. Biochim Biophys Acta 1768:688–693PubMedCrossRefGoogle Scholar
  108. 108.
    Yakata K, Tani K, Fujiyoshi F (2011) Water permeability and characterization of aquaporin-11. J Struct Biol 174:315–320PubMedCrossRefGoogle Scholar
  109. 109.
    Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97(6):397–414PubMedCrossRefGoogle Scholar
  110. 110.
    Zardoya R, Villalba S (2001) A phylogenetic framework for the aquaporin family in eukaryotes. J Mol Evol 52(5):391–404PubMedCrossRefGoogle Scholar
  111. 111.
    Zardoya R, Ding X, Kitagawa Y, Chrispeels MJ (2002) Origin of plant glycerol transporters by horizontal gene transfer and functional recruitment. Proc Natl Acad Sci U S A 99:14893–14896PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Zeuthen T (2010) Water-transporting proteins. J Membr Biol 234:57–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Kenichi Ishibashi
    • 1
    Email author
  • Yoshiyuki Morishita
    • 2
  • Yasuko Tanaka
    • 1
  1. 1.Division of PathophysiologyMeiji Pharmaceutical UniversityKiyose, TokyoJapan
  2. 2.Division of Nephrology, Saitama Medical CenterJichi Medical UniversitySaitama-CityJapan

Personalised recommendations