Diversifying Biomass Uses Through New Cropping Systems

  • François-Régis Goebel
  • Jean-Louis Chopart
  • Christophe Poser
  • Serge Braconnier
  • Jean-François Martiné
  • Edward Gérardeaux
Chapter

Abstract

Global demand for renewable energy from plant biomass is growing steadily as a result of policy choices, demographics, and rising per capita energy needs. This energy requirement is turning out to be a major obstacle to economic development on tropical islands and remote landlocked areas. Thus, sugarcane is no longer cultivated exclusively for sugar but also for its biomass which, when burnt, helps produce electricity. In Guadeloupe, there are plans to generate electricity from almost total sugarcane combustion. It has also become possible to produce second-generation ethanol from aboveground plant parts. To this end, CIRAD selected sugarcane and sorghum as model plants to conduct several projects in partnership that helped identify suitable planting material and agricultural practices producing 67–85 T/ha/year of sugarcane dry matter (DM) and 30–50 T/ha/year of sorghum DM. Various cultivation models were calibrated to extend the scope of the results to other areas or climatic conditions. In projects on sugarcane, biomass is used to generate electricity through combustion, while the Sweetfuel project uses sorghum biomass to produce bioethanol. The diversification of products in sugarcane and sorghum chains can offer producers and industrial actors new outlets in an environmental context that is not only increasingly constrained (pesticide reduction, climate change) but is also becoming increasingly competitive due to the liberalization of the sugar market.

References

  1. Botha FC (2010) Future prospects. In: RJ H, Kole C (eds) Genetics, genomics and breeding of sugarcane. Science Publishers, Enfield, pp 249–264Google Scholar
  2. Chopart JL, Bachelier B (2012) Propriétés et performances comparées de 16 cultivars de Poacées (Saccharum sp. et Erianthus) en vue d’un usage énergétique. In: Proceedings Congrès sucrier. Afcas/Artas, La Réunion, September, 9 pGoogle Scholar
  3. Chopart JL, Sergent G (2015a) Root biomass quantification of sugar and multipurpose cane varieties for sustainable production. In: Proceedings of ISSCT Agronomy Workshop, Durban, 24–28 August, 1 pGoogle Scholar
  4. Chopart JL, Sergent G (2015b) Estimation de la biomasse à laisser au sol en culture de canne combustible dans le Sud de la Guadeloupe. Note scientifique Rebecca WP1 no. 2, 15 pGoogle Scholar
  5. Chopart JL, Sergent G (2015c) Estimation de la faisabilité d’une coupe mécanique de cannes fibreuses au cours de l’année dans la zone cannière de Capesterre-B-E à Sainte-Rose (Guadeloupe). Note scientifique Rebecca WP1 no. 4, 11 pGoogle Scholar
  6. Chopart JL, Bonnal L, Martiné JF, Sabatier D (2013) Functional relationships between dry above-ground biomass and the energy yield of sugarcane. In: Proceedings of XXVIII ISSCT (International Society of Sugar Cane Technologists) Congress, São Paulo, 14–27 June, vol 28, 11 pGoogle Scholar
  7. Chopart JL, Sergent G, Goebel FR (2015) Cropping systems for energy cane grown on volcanic soil in a tropical climate: initial results on planting dates, cycle duration and pest pressure. In: Proceedings of ISSCT Agronomy Workshop, Durban, 24–28 August, 1 pGoogle Scholar
  8. Eggleston G, DeLucca A, Sklanka S, Dalley C, St. Cyr E, Powell R (2015) Investigation of the stabilization and preservation of sweet sorghum juices. Ind Crop Prod 64:258–270CrossRefGoogle Scholar
  9. Fisher G, Teixeira E, Tothne Hizsnyik E, van Velthuis H (2009). Land use dynamics and sugarcane production. In: Sugarcane ethanol, contributions to climate change mitigation and the environment (P. Zuurbier, J. van de Vooren, dir.). Academic Publishers, Wageningen ,29–62Google Scholar
  10. Leclerc E, Pressoir G, Braconnier S (2014) L’avenir prometteur du sorgho sucré en Haïti. Field Actions Science Reports, 9. Consultable sur. http://factsreports.revues.org/2801, Accessed 8 Apr 2016
  11. Martiné JF, Roussel C, Sabatier D (2012) Influence de paramètres agro-climatiques sur la production de sucre et d’énergie. In: Proceedings Congrès sucrier, Afcas/Artas, La Réunion, September, 7 pGoogle Scholar
  12. Roussel C, Martiné JF, Petit A, Sabatier D, Corcodel L (2013) Harvest schedule for multi-purpose cane production. In: Proceedings of XXVIII ISSCT (International Society of Sugar Cane Technologists) Congress, São Paulo, 14–27 JuneGoogle Scholar
  13. Sabatier D, Martiné JF, Chiroleu F, Roussel C, Letourmy P, van Antwerpen R, Gabrielle B, Ney B (2015) Optimization of sugarcane farming as a multipurpose crop for energy and food production. GCB Bioenergy 7(1):40–56CrossRefGoogle Scholar
  14. Schaffert RE, Damasceno CMB, Parrella RAC (2011) Breeding strategies for sorghum as a feedstock for first and second generation technologies for production of bioenergy in Brazil. In: 6th Frontiers in bioenergy: United States-Brazil symposium on sustainable bioenergy, 15–18 May, West Lafayette (Indiana), EmbrapaGoogle Scholar

Copyright information

© Éditions Quæ 2017

Authors and Affiliations

  • François-Régis Goebel
    • 1
  • Jean-Louis Chopart
    • 2
  • Christophe Poser
    • 3
  • Serge Braconnier
    • 4
  • Jean-François Martiné
    • 1
  • Edward Gérardeaux
    • 1
  1. 1.CIRAD – UPR AidaMontpellierFrance
  2. 2.CIRAD – UPR Aida – RoujolPetit-BourgFrance
  3. 3.CIRAD – UPR AidaLa BretagneFrance
  4. 4.CIRAD – UMR AgapMontpellierFrance

Personalised recommendations