Advertisement

Evolution and Challenges of Varietal Improvement Strategies

  • Robert DomaingueEmail author
  • Sylvie Lewicki
  • Patrice This
  • Frédéric Bakry
  • Jean-Pierre Horry
  • Serge Braconnier
  • David Pot
  • Gilles Trouche
Chapter

Abstract

Agricultural production and supply chains are facing major challenges in the form of increasing demand for food products, a diversified use of agricultural products including for non-food purposes, ecologically intensive agriculture, and the necessity of taking climate change into account. The creation and adoption of new varieties that are productive, diversified, better adapted, and more environmentally friendly can help cropping systems that seek to address these issues become more efficient. Plant breeding efforts must anticipate the needs of the end users and adapt to very different agri-chains, illustrated in this chapter by two examples: first, an agri-chain that is highly structured around targeted export products, for example, the dessert banana, which requires ideotypes that meet the requirements of production and marketing systems; and second, an emerging agri-chain for multi-use sorghum, characterized by new production objectives of increased energy potential and production of biomaterials, sometimes without compromising with the requirement of high grain yields. To meet the objectives and the sustainability of agri-chains, research into genetic improvement must propose new approaches, new tools, and innovative breeding methods. The objectives, and sometimes the entire breeding process, are shared with all the actors, especially the end users, as part of an enhanced partnership within agri-chains. The breeding strategy also depends on ease of access, better use of available and useful genetic resources, in-depth knowledge of the structure and diversity of these resources, genetic determinism of desirable traits, and pre-breeding approaches. All these scientific and partnership innovations ensure the necessary responsiveness to support the execution of current breeding processes and the identification of new varieties that meet current and future uses and services.

Keywords

Sweet Sorghum Catch Crop Sorghum Variety Coffee Leaf Rust Mini Core Collection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abécassis J, Rousset M (2012) Quelles évolutions pour les filières céréalières ? Innov Agronomiques 19:1–11Google Scholar
  2. Ahmadi N, Bertrand B, Glaszmann JC (2013) Rethinking plant breeding. In: Hainzelin E (ed) Cultivating biodiversity to transform agriculture. London, Springer, pp 91–140CrossRefGoogle Scholar
  3. Albajes R, Cantero-Martínez C, Capell T, Christou P, Farre A, Galceran J, Loópez-Gatius F, Marin S, Martín-Belloso O, Motilva M-J, Nogareda C, Peman J, Puy J, Recasens J, Romagosa I, Romero MP, Sanchis V, Savin R, Slafer GA, Soliva-Fortuny R, Viñnas I, Voltas J (2013) Building bridges: an integrated strategy for sustainable food production throughout the value chain. Mol Breed 32(4):743–770CrossRefGoogle Scholar
  4. Bakry F, Carreel F, Jenny C, Horry JP (2009) Genetic improvement of banana. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. New York, Springer, pp 3–50CrossRefGoogle Scholar
  5. Bunn C, Läderach P, Ovalle RO, Kirschke D (2014) A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Clim Chang 129(1):89–101Google Scholar
  6. D’Hont A et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–219CrossRefPubMedGoogle Scholar
  7. Daniells JW (2009) Global banana disease management. Getting serious with sustainability and food security. Acta Hortic 828:411–416CrossRefGoogle Scholar
  8. Desclaux D, Chiffoleau Y, Nolot JM (2013) From ideotype to realtype concept: Dynamic management of plant breeding by a multidisciplinary and participatory way. Example of organic durum wheat. Innovations Agronomiques 32:455–466Google Scholar
  9. Gutjahr S, Clément-Vidal A, Soutiras A, Sonderegger N, Braconnier S, Dingkuhn M, Luquet D (2013) Grain, sugar and biomass accumulation in photoperiod-sensitive sorghums. II. Biochemical processes at internode level and interaction with phenology. Funct Plant Biol 40(4):355–368CrossRefGoogle Scholar
  10. Hellin J, Beuchelt T, Camacho C, Govaerts B, Donnet L, Riis-Jacobsen J (2014) An innovation systems approach to enhanced farmer adoption of climate-ready germplasm and agronomic practices, Capri Working Paper No. 116. International Food Policy Research Institute, Washington, DC, p 30Google Scholar
  11. IEA Bioenergy (2009) Annual report 2009. IEA Bioenergy, p 136Google Scholar
  12. Jaramillo J, Muchugu J, Vega FE, Davis A, Borgemeister C, Chabi-Olaye A (2011) Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS One 6(9):e24528CrossRefPubMedPubMedCentralGoogle Scholar
  13. Litrico I, Violle C (2015) Diversity in plant breeding: a new conceptual framework. Trends Plant Sci 20(10):604–613CrossRefPubMedGoogle Scholar
  14. OECD (2009) The bioeconomy to 2030: designing a policy agenda, OECD International Futures Programme. OECD Publications, Paris 322 pCrossRefGoogle Scholar
  15. Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, Carreel F, Hippolyte I, Horry JP, Jenny C, Lebot V, Risterucci AM, Tomekpé K, Doutrelepont H, Ball T, Manwaring J, De Maret P, Denham T (2011) Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci U S A 108(28):11311–11318CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ploetz RC, Churchill ACL (2011) Fusarium wilt: the banana disease that refuses to go away. In: Proceedings International ISHS-ProMusa Symposium on Global Perspectives on Asian Challenges, vol 897. Acta Horticulturae ISHS, Guangzhou, pp 519–526Google Scholar
  17. Pot D, Trouche G, Le Moigne N, Carrère H, Luquet D, Soccalingame L, Vilmus I, Roques S, Berger A, Clément-Vidal A, Soutiras A, Jaffuel S, Verdeil JL, Gatineau F, Bastianelli D, Bonnal D, Vaksmann M, Rami JF, Jeanson P, Clamens S, Ventelon Debout M, Alcouffe J, Chapus M, Fabre F, Navard P, Vo L, Chupin L, Thera K, Témé N, Dufayard JF, Barrière Y, Höfte H (2015) Combining genetic analysis and breeding for multipurpose sorghum: from the development of a biomass phenotyping tool kit to the development of dedicated breeding schemes. XXIIIrd EUCARPIA Maize and Sorghum Conference, 10–11 June, Montpellier, FranceGoogle Scholar
  18. Salas Fernandez MG, Becraft PW, Yin Y, Lübberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci 14(8):454–461CrossRefPubMedGoogle Scholar
  19. Sanford JC (1983) Ploidy manipulations. In: Moore JN, Janick J (eds) Methods in fruit breeding. Purdue University Press, West Lafayette, pp 100–123Google Scholar
  20. Temple L, Marie P, Bakry F (2008) Les déterminants de la compétitivité des filières bananes de Martinique et de Guadeloupe. Économie Rurale 308:35–53Google Scholar
  21. Trouche G, Bastianelli D, Cao-Hamadou TV, Chantereau J, Rami JF, Pot D (2014) Exploring the variability of a photoperiod-insensitive sorghum genetic panel for stem composition and related traits in temperate environments. Field Crop Res 166:72–81CrossRefGoogle Scholar
  22. van Bueren EL, Jones SS, Tamm L, Murphy KM, Myers JR, Leifert C, Messmer MM (2011) The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. NJAS-Wagening J Life Sci 58(3–4):193–205CrossRefGoogle Scholar

Copyright information

© Éditions Quæ 2017

Authors and Affiliations

  • Robert Domaingue
    • 1
    Email author
  • Sylvie Lewicki
    • 1
  • Patrice This
    • 1
  • Frédéric Bakry
    • 1
  • Jean-Pierre Horry
    • 1
  • Serge Braconnier
    • 1
  • David Pot
    • 1
  • Gilles Trouche
    • 1
  1. 1.CIRAD – UMR AgapMontpellierFrance

Personalised recommendations