Design of Cropping Systems and Ecological Intensification

  • Luc de Lapeyre de Bellaire
  • Bruno Bachelier
  • Marc Dorel
  • François-Régis Goebel
  • Hervé Guibert
  • Olivier Husson
  • Patrick Jagoret
  • Pascal Marnotte
  • Jean-Michel Risède
  • Éric Scopel
Chapter

Abstract

The limitations of conventional farming systems become apparent when confronted with the challenges of sustainability. Conventional agricultural practices tend to degrade soil fertility and result in environmental damage and health risks through their various activities, including tillage, water use and management, and the use of fertilizers and pesticides, thus making these practices no longer acceptable from the economic and social points of view. CIRAD and its partners are therefore working on an agroecological transition founded on new ecological intensification practices that primarily consist of the elimination of tillage to help revive the soil’s biological activity, use of cover crops to boost nutrient recycling and the organic-mineral management of crops, maintenance of a permanent cover to improve water efficiency and to control erosion, and the recourse to biological control (functional biodiversity and cropping practices) of pests to limit the damage caused by them. Implementing these practices implies reviewing cropping system design methods and processes to better integrate the dimensions of actors, space, and time. It is indeed essential to involve or engage producers and other local actors in a more comprehensive manner, take different levels into account (cropping systems, production systems, markets, global changes, land use, etc.) as well as the temporal aspects of this agroecological transition, promote trajectories of progressive adaptation, and envisage modalities of providing support to actors. This process can give rise to technical solutions that can help enhance the sustainability of agricultural production systems.

References

  1. Bancal MO, Ney B, Soussana JF (2006) La parcelle, lieu d’intégrations entre différentes populations. In: Doré T, Le Bail M, Martin P, Ney B, Roger-Estrade J (eds) L’agronomie aujourd’hui. Éditions Quæ, Versailles, pp 137–150Google Scholar
  2. Bastiaanse H, de Lapeyre de Bellaire L, Lassois L, Misson C, Jijakli MH (2010) Integrated control of crown rot of banana with Candida oleophila strain O, calcium chloride and modified atmosphere packaging. Biol Control 53(1):100–107CrossRefGoogle Scholar
  3. Boudreau MA (2013) Diseases in intercropping systems. Annu Rev Phytopathol 51:499–519CrossRefPubMedGoogle Scholar
  4. Charbonnier E, Ronceux A, Carpentier AS, Soubelet H, Barriuso E (2015) Pesticides : des impacts aux changements de pratiques. Versailles, Éditions Quæ 400 pGoogle Scholar
  5. de Lapeyre de Bellaire L, Essoh Ngando J, Abadie C, Chabrier C, Blanco R, Lescot T, Carlier J, Côte F (2009) Is chemical control of Mycosphaerella foliar diseases of bananas sustainable? Acta Hortic 828:161–170CrossRefGoogle Scholar
  6. de Lapeyre de Bellaire L, Guillermet C, Le Guen R, Fouré E, Dorel M, Lescot T (2013) Concepción y evaluación de sistemas de cultivo para crecer variedades de Cavendish sin control químico de Sigatoka. Scientific workshop on controlling black Sigatoka of banana crops in the Caribbean region. Havana, Cuba, 19–21 March 2013Google Scholar
  7. Dorel M (1994) Mécanisation et tassement des sols en culture bananière. Proceedings XI Acorbat Meeting, San Jose, Costa Rica, pp 667–677Google Scholar
  8. Dorel M, Roger-Estrade J, Manichon H, Delvaux B (2000) Porosity and soil water properties of Caribbean volcanic ash soils. Soil Use Manag 16(2):133–140CrossRefGoogle Scholar
  9. Dorel M, Achard R, Tixier P (2008) SIMBA-N: Modeling nitrogen dynamics in banana populations in wet tropical climate. Application to fertilization management in the Caribbean. Eur J Agron 29(1):38–45CrossRefGoogle Scholar
  10. Dorel M, Lakhia S, Pététin C, Bouamer S, Risède JM (2010) No till banana planting on crop residue mulch. Effect on soil quality and crop functioning. Fruits 65(2):55–68CrossRefGoogle Scholar
  11. Husson O, Séguy L, Charpentier H, Rakotondramanana (eds), Michellon P, Raharison T, Naudin K, Enjalric F, Moussa N, Razanamparany C, Rasolomanjaka J, Bouzinac S, Chabanne A, Boulakia S, Tivet F, Chabierski S, Razafintsalama H, Rakotoarinivo C, Andrianasolo HM, Chabaud FX, Rakotondralambo T, Rakotondralambo P, Ramaroson I (2013) Manuel pratique du semis direct sur couverture végétale permanente (SCV). Application à Madagascar. GSDM/CIRAD, Antananarivo. Volume 1 Chapitre 1: 1–24Google Scholar
  12. Jagoret P, Michel-Dounias I, Malézieux E (2011) Long-term dynamics of cocoa agroforests: a case study in central Cameroon. Agrofor Syst 81:267–278CrossRefGoogle Scholar
  13. Jagoret P, Michel-Dounias I, Snoeck D, Todem NH, Malézieux E (2012) Afforestation of savannah with cocoa agroforestry systems: a small-farmer innovation in central Cameroon. Agrofor Syst 86(3):493–504CrossRefGoogle Scholar
  14. Lassois L, Bastiaanse H, Chillet M, Jullien A, Jijakli MH, de Lapeyre de Bellaire L (2010) Hand position on the bunch and source-sink ratio influence the level of banana fruit susceptibility to crown rot disease. Ann Appl Biol 156(2):221–229CrossRefGoogle Scholar
  15. Lescot T (2012) Banana Sector. Commonwealth of Dominica. Thematic Support for the Identification and Formulation of the Support Framework under the EU Funded Banana Accompanying Measures (BAM), Final Evaluation Report. European Union, Brussels, p. 26Google Scholar
  16. Milgroom MG, Levin SA, Fry WE (1989) Population genetics theory and fungicide resistance. In: Leonard KJ, Fry WE (eds) Plant disease epidemiology. 2. Genetics, resistance and management. McGraw Hill, New York, pp 340–367Google Scholar
  17. Mundt CC (2002) Use of multiline cultivars and cultivars mixtures for disease management. Annu Rev Phytopathol 40:381–410CrossRefPubMedGoogle Scholar
  18. Savary S, Teng PS, Willocquet L, Nutter FW (2006) Quantification and modeling of crop losses: a review of purposes. Annu Rev Phytopathol 44:89–112CrossRefPubMedGoogle Scholar
  19. Snoeck D, Abolo D, Jagoret P (2010) Temporal changes in VAM fungi in the cocoa agroforestry systems of central Cameroon. Agrofor Syst 78(3):323–328CrossRefGoogle Scholar
  20. Torquebiau EF (2000) A renewed perspective on agroforestry concepts and classification. Comptes rendus de l’Académie des sciences, Série III, Sciences de la vie, 323(11):1009–1017Google Scholar
  21. zur Wiesch PA, Kouyos R, Engelstadter J, Regoes RR, Bonhoeffer S (2011) Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect Dis 11(3):236–247CrossRefPubMedGoogle Scholar

Copyright information

© Éditions Quæ 2017

Authors and Affiliations

  • Luc de Lapeyre de Bellaire
    • 1
  • Bruno Bachelier
    • 2
  • Marc Dorel
    • 3
  • François-Régis Goebel
    • 2
  • Hervé Guibert
    • 2
  • Olivier Husson
    • 4
  • Patrick Jagoret
    • 5
  • Pascal Marnotte
    • 2
  • Jean-Michel Risède
    • 1
  • Éric Scopel
    • 2
  1. 1.CIRAD – UPR GecoMontpellierFrance
  2. 2.CIRAD – UPR AidaMontpellierFrance
  3. 3.CIRAD – UPR GecoNeufchâteauGuadeloupe
  4. 4.CIRAD – UPR Aida – Africa RiceCotonouBenin
  5. 5.CIRAD – UMR SystemMontpellierFrance

Personalised recommendations