Introduction to the Application of Paleoecological Techniques in Estuaries

  • Kathryn H. Taffs
  • Krystyna M. Saunders
  • Kaarina Weckström
  • Peter A. Gell
  • C. Gregory Skilbeck
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 20)


Modern estuaries are naturally dynamic coastal environments that grade from the freshwater of a riverine ecosystem to the salt water of the ocean. The geographic location and the latitudinal climate setting determine the variability within an estuary, and the unique combinations of tides, waves and wind regimes, with the impinging ocean currents, create the dynamic physical and chemical environment. Variability in the estuarine environment can range across diurnal to decadal time scales. Within this setting reside highly diverse ecosystems containing rich biological resources adapted to the constantly changing environment.


  1. Andersen JH, Conley DJ, Hedal S (2004) Palaeoecology, reference conditions and classification of ecological status: the EU Water Framework Directive in practice. Mar Pollut Bull 49(4):283–290CrossRefGoogle Scholar
  2. Anderson N, Odgaard B (1994) Recent palaeolimnology of three shallow Danish lakes. Hydrobiologia 275(276):411–422CrossRefGoogle Scholar
  3. Battarbee RW, Mason J, Renberg I et al (1990) Palaeolimnology and lake acidification. Philos Trans R Soc Lond B 327(1240):223–445Google Scholar
  4. Bennion H, Fluin J, Simpson GL (2004) Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. J Appl Ecol 41:124–138CrossRefGoogle Scholar
  5. Birks HJB, Line JM, Juggins S et al (1990) Diatoms and pH reconstruction. Philos Trans R Soc Lond B 327:263–278CrossRefGoogle Scholar
  6. Bradshaw EG, Nielsen AB, Anderson NJ (2006) Using diatoms to assess the impacts of prehistoric, pre-industrial and modern land-use on Danish lakes. Reg Environ Change 6:17–24CrossRefGoogle Scholar
  7. Brown KJ, Pasternack GB (2005) A palaeoenvironmental reconstruction to aid in the restoration of floodplain and wetland habitat on an upper deltaic plain, California, USA. Environ Conserv 32(2):103–116CrossRefGoogle Scholar
  8. Cearreta A, Irabien M, Ulibarri I et al (2002) Recent salt marsh development and natural regeneration of reclaimed areas in the Plentzia Estuary, n. Spain. Estuar Coast Shelf Sci 54:863–886CrossRefGoogle Scholar
  9. Fritz SC (1989) Lake development and limnological response to prehistoric and historic land-use in Diss, Norfolk, UK. J Ecol 77:182–202CrossRefGoogle Scholar
  10. Gell P, Tibby J, Fluin J et al (2005) Accessing limnological change and variability using fossil diatom assemblages, south-east Australia. River Res Appl 21:257–269CrossRefGoogle Scholar
  11. Goff JR, Chagué-Goff C, Nichol S (2001) Palaeotsunami deposits: a New Zealand perspective. Sediment Geol 143:1–6CrossRefGoogle Scholar
  12. Goudie A (2000) The human impact on the natural environment. Wiley-Blackwell, HobokenGoogle Scholar
  13. Hays PE, Pisias NG, Roelofs AK (1989) Paleoceanography of the eastern equatorial Pacific during the Pliocene: a high-resolution radiolarian study. Paleoceanography 4(1):57–73CrossRefGoogle Scholar
  14. Horton BP, Culver SJ (2008) Modern intertidal foraminifera of the outer banks, North Carolina, USA, and their applicability for sea-level studies. J Coast Res 24:1110–1125CrossRefGoogle Scholar
  15. Horton BP, Zong Y, Hillier C et al (2007) Diatoms from Indonesian mangroves and their suitability as sea-level indicators for tropical environments. Mar Micropaleontol 63:155–168CrossRefGoogle Scholar
  16. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ et al (eds) Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  17. Krull E, Haynes D, Lamontagne S et al (2009) Changes in the chemistry of sedimentary organic matter within the Coorong over space and time. Biogeochemistry 92(1–2):9–25CrossRefGoogle Scholar
  18. Loubere P (1999) A multiproxy reconstruction of biological productivity and oceanography in the eastern equatorial Pacific for the past 30,000 years. Mar Micropaleontol 37(2):173–198CrossRefGoogle Scholar
  19. Mulrennan ME, Woodroffe CD (1998) Saltwater intrusion into the coastal plains of the Lower Mary River, Northern Territory, Australia. J Environ Manage 54(3):169–188CrossRefGoogle Scholar
  20. Prasad V, Phartiyal B, Sharma A (2007) Evidence of enhanced winter precipitation and the prevalence of a cool and dry climate during the mid to late Holocene in mainland Gujarat, India. Holocene 17(7):889–896CrossRefGoogle Scholar
  21. Saenger C, Cronin T, Thunell R et al (2006) Modelling river discharge and precipitation from estuarine salinity in the northern Chesapeake Bay: application to Holocene palaeoclimate. Holocene 16(4):467–477CrossRefGoogle Scholar
  22. Saunders KM, Taffs KH (2009) Palaeoecology: a tool to improve the management of Australian estuaries. J Environ Manage 90:2730–2736CrossRefGoogle Scholar
  23. Sawai Y, Fujii Y, Fujiwara O et al (2008) Marine incursions of the past 1500 years and evidence of tsunamis at Suijin-numa, a coastal lake facing the Japan Trench. Holocene 18:517–528CrossRefGoogle Scholar
  24. Schell TM, Scott DB, Rochon A et al (2008) Late Quaternary paleoceanography and paleo-sea ice conditions in the Mackenzie Trough and Canyon, Beaufort Sea. Can J Earth Sci 45(11):1399–1415CrossRefGoogle Scholar
  25. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective. Wiley Blackwell, New YorkGoogle Scholar
  26. Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climate change using lake sediments. Front Ecol Environ 5:466–474CrossRefGoogle Scholar
  27. State of the Environment Report (2006) Australia: state of the environment. Department of the Environment. Accessed 17 July 2009
  28. Taffs KH, Farago LJ, Heijnis H et al (2008) A diatom-based Holocene record of human impact from a coastal environment: Tuckean Swamp, eastern Australia. J Paleolimnol 39:71–82CrossRefGoogle Scholar
  29. Wollenburg JE, Kuhnt W, Mackensen A (2001) Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr: the benthic foraminiferal record. Paleoceanography 16(1):65–77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Kathryn H. Taffs
    • 1
  • Krystyna M. Saunders
    • 2
    • 3
  • Kaarina Weckström
    • 4
  • Peter A. Gell
    • 5
  • C. Gregory Skilbeck
    • 6
  1. 1.School of Environment, Science and Engineering, Southern Cross UniversityLismoreAustralia
  2. 2.Institute of Geography and Oeschger Centre for Climate Change Research, University of BernBernSwitzerland
  3. 3.Australian Nuclear Science and Technology OrganisationLucas HeightsAustralia
  4. 4.Department of Marine Geology and GlaciologyGeological Survey of Denmark and GreenlandCopenhagenDenmark
  5. 5.Faculty of Science and TechnologyWater Research Network, Federation University AustraliaMt HelenAustralia
  6. 6.School of Life Sciences, University of Technology SydneyUltimoAustralia

Personalised recommendations