Advertisement

Taxonomy of Yersinia pestis

  • Zhizhen Qi
  • Yujun Cui
  • Qingwen Zhang
  • Ruifu YangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 918)

Abstract

This chapter summarized the taxonomy and typing works of Yersinia pestis since it’s firstly identified in Hong Kong in 1894. Phenotyping methods that based on phenotypic characteristics, including biotyping, serotyping, antibiogram analysis, bacteriocin typing, phage typing, and plasmid typing, were firstly applied in classification of Y. pestis in subspecies level. And then, with the advancement of molecular biological technology, the methods based on outer membrane protein profiles, fatty acid composition, and bacterial mass fingerprinting were also used to identify the populations within Y. pestis. However, Y. pestis is a highly homogenous species; therefore, the above typing methods could only provide low resolution, e.g., only one serotype and one phage type were observed for the whole species. Since the 1990s, molecular typing based on DNA variations, including single-nucleotide polymorphism, gene gain/loss, variable-number tandem repeats, clustered regularly interspaced short palindromic repeat, etc., was introduced and improved the resolution and robust of typing result. Especially in recent years, genotyping-based whole-genome-wide variations were successfully employed in Y. pestis, which built the “gold standard” of typing scheme of the species and could distinguish the samples under the strain level. The taxonomy and typing works leaved us enormous polymorphism data; therefore, a comprehensive fingerprint database of Y. pestis was needed to collect and standardize these data, for facilitating future works on evolution, plague surveillance and control, anti-bioterrorism, and microbial forensic researches.

Keywords

Taxonomy Phenotyping Genotyping Molecular typing Population diversity 

References

  1. 1.
    Van Loghem JJ. The classification of the plague-bacillus. Antonie Van Leeuwenhoek. 1944;10(1–2):15.CrossRefGoogle Scholar
  2. 2.
    Skerman VBD, McGowan V, Sneath PH. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30:225–420.CrossRefGoogle Scholar
  3. 3.
    Bercovier H, Steigerwalt AG, Guiyoule A, Huntley-Carter G, Brenner DJ. Yersinia aldovae (formerly Yersinia enterocolitica-like group X2): a new species of Enterobacteriaceae isolated from aquatic ecosystems. Int J Syst Bacteriol. 1984;34:166–72.CrossRefGoogle Scholar
  4. 4.
    Sprague LD, Neubauer H. Yersinia aleksiciae sp. nov. Int J Syst Evol Microbiol. 2005;55(Pt 2):831–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Wauters G, Janssens M, Steigerwalt AG, Brenner DJ. Yersinia mollaretii sp. nov. and Yersinia bercovieri sp. nov., formerly called Yersinia enterocolitica biogroups 3A and 3B. Int J Syst Bacteriol. 1988;38:424–9.CrossRefGoogle Scholar
  6. 6.
    Neubauer H, Aleksic S, Hensel A, Finke EJ, Meyer H. Yersinia enterocolitica 16S rRNA gene types belong to the same genospecies but form three homology groups. Int J Med Microbiol. 2000;290(1):61–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Hurst MR, Becher SA, Young SD, Nelson TL, Glare TR. Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. Int J Syst Evol Microbiol. 2011;61(Pt 4):844–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Ursing J, Brenner DJ, Bercovier H, Fanning GR, Steigerwalt AG, Brault J, Mollaret HH. Yersinia frederiksenii: a new species of Enterobacteriaceae composed of rhamnose-positive strains (formerly called atypical Yersinia enterocolitica or Yersinia enterocolitica-like). Curr Microbiol. 1980;4:213–7.CrossRefGoogle Scholar
  9. 9.
    Brenner DJ, Bercovier H, Ursing J, Alonso JM, Steigerwalt AG, Fanning GR, Carter GP, Mollaret HH. Yersinia intermedia: a new species of Enterobacteriaceae composed of rhamnose-positive, melibiose-positive, raffinose-positive strains (formerly called Yersinia enterocolitica or Yersinia enterocolitica-like). Curr Microbiol. 1980;4:207–12.CrossRefGoogle Scholar
  10. 10.
    Bercovier H, Ursing J, Brenner DJ, Steigerwalt AG, Fanning GR, Carter GP, Mollaret HH. Yersinia kristensenii: a new species of Enterobacteriaceae composed of sucrose-negative strains (formerly called Yersinia enterocolitica or Yersinia enterocolitica-like). Curr Microbiol. 1980;4:219–24.CrossRefGoogle Scholar
  11. 11.
    Merhej V, Adekambi T, Pagnier I, Raoult D, Drancourt M. Yersinia massiliensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol. 2008;58(Pt 4):779–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Souza RA, Falcao DP, Falcao JP. Emended description of Yersinia massiliensis. Int J Syst Evol Microbiol. 2011;61(Pt 5):1094–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Murros-Kontiainen A, Fredriksson-Ahomaa M, Korkeala H, Johansson P, Rahkila R, Bjorkroth J. Yersinia nurmii sp. nov. Int J Syst Evol Microbiol. 2011;61(Pt 10):2368–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Murros-Kontiainen A, Johansson P, Niskanen T, Fredriksson-Ahomaa M, Korkeala H, Bjorkroth J. Yersinia pekkanenii sp. nov. Int J Syst Evol Microbiol. 2011;61(Pt 10):2363–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Jensen WI, Owen CR, Jellison WL. Yersinia philomiragia sp. n., a new member of the Pasteurella group of bacteria, naturally pathogenic for the muskrat (Ondatra zibethica). J Bacteriol. 1969;100(3):1237–41.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Smith JE, Thal E. A taxonomic study of the genus Pasteurella using a numeral technique. Acta Patholo et Bacteriol Scand. 1965;64:213–23.Google Scholar
  17. 17.
    Williams JE. Proposal to reject the new combination Yersinia pseudotuberculosis subsp. pestis for violation of the first principle of the International Code of Nomenclature of Bacteria. Request for an opinion. Int J Syst Bacteriol. 1984;34:268–9.CrossRefGoogle Scholar
  18. 18.
    JUDICIAL OPINION 60: Rejection of the name Yersinia pseudotuberculosis subsp. pestis (van Loghem) Bercovier et al. 1981 and conservation of the name Yersinia pestis (Lehmann and Neumann) van Loghem 1944 for the plague bacillus. Int J Syst Bacteriol 1985;35:540.Google Scholar
  19. 19.
    Bercovier H, Mollaret HH, Alonso JM, Brault J, Fanning GR, Steigerwalt AG, Brenner DJ. Intra- and interspecies relatedness of Yersinia pestis by DNA hybridization and its relationship to Yersinia pseudotuberculosis. Curr Microbiol. 1980;4:225–9.CrossRefGoogle Scholar
  20. 20.
    Wayne LG. Actions of the Judicial Commission of the International Committee on Systematic Bacteriology on requests for opinions published in 1983 and 1984. Int J Syst Bacteriol. 1986;1986(36):357–8.CrossRefGoogle Scholar
  21. 21.
    Garrity GM, Labeda DP, Oren A. Judicial commission of the international committee on systematics of prokaryotes. XIIth international (IUMS) congress of bacteriology and applied microbiology. Minutes of the meetings, 3, 4 and 6 august 2008, Istanbul, Turkey. Int J Syst Evol Microbiol. 2011;61:2775–80.CrossRefGoogle Scholar
  22. 22.
    Aleksic S, Steigerwalt AG, Bockemuhl J, Huntley-Carter GP, Brenner DJ. Yersinia rohdei sp. nov. isolated from human and dog feces and surface water. Int J Syst Bacteriol. 1987;37:327–32.Google Scholar
  23. 23.
    Gelev I, Khvoinev A, Dimitrov K, Strashimirova N. Hemorrhagic septicemia in rainbow trout due to Yersinia ruckeri sp. nov. Veterinarno-meditsinski nauki. 1984;21(6):84–90.PubMedGoogle Scholar
  24. 24.
    Ewing WH, Ross AJ, Brenner DJ, Fanning GR. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium. Int J Syst Evol Microbiol. 1978;28:37–44.Google Scholar
  25. 25.
    Sprague LD, Scholz HC, Amann S, Busse HJ, Neubauer H. Yersinia similis sp. nov. Int J Syst Evol Microbiol. 2008;58(Pt 4):952–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Savin C, Martin L, Bouchier C, Filali S, Chenau J, Zhou Z, Becher F, Fukushima H, Thomson NR, Scholz HC, et al. The Yersinia pseudotuberculosis complex: characterization and delineation of a new species, Yersinia wautersii. Int J Med Microbiol. 2014;304(3-4):452–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 1999;96(24):14043–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR, et al. Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A. 2004;101(51):17837–42.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Perry RD, Fetherston JD. Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev. 1997;10(1):35–66.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Judicial-Commission: JUDICIAL OPINION 60: Rejection of the name Yersinia pseudotuberculosis subsp. pestis (van Loghem) Bercovier et al. 1981 and conservation of the name Yersinia pestis (Lehmann and Neumann) van Loghem 1944 for the plague bacillus. Int J Syst Bacteriol. 1985;35:540.Google Scholar
  31. 31.
    Anisimov AP, Dyatlov IA. A novel mechanism of antibiotic resistance in plague. J Med Microbiol. 1997;46(10):887–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Dennis DT, Hughes JM. Multidrug resistance in plague. N Engl J Med. 1997;337(10):702–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Anisimov AP, Lindler LE, Pier GB. Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev. 2004;17(2):434–64.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ji S, Zhang H, Liu Y, He Y, Huang J, Song Y, Zhu J, et al. A study on typing of Yersinia pestis in China and its ecologioepidmiologica significance (in Chinese). Chi J Epidemiol. 1990;11(suppl):60–6.Google Scholar
  35. 35.
    Ji S, He J, Teng Y, Zhan X, Lei C, Wang W. The discovery and research of plague natural foci in China (in Chinese). Chi J Epidemiol. 1990;11(Suppl):1–41.Google Scholar
  36. 36.
    Devignat R. Varieties of Pasteurella pestis; new hypothesis. Bull World Health Organ. 1951;4(2):247–63.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Mollaret HH, Mollaret C. Melibiose fermentation in the genus Yersinia and its importance in the diagnosis of the varieties of Y. pestis. Bull Soc Pathol Exot Filiales. 1965;58(2):154–6.PubMedGoogle Scholar
  38. 38.
    Zhou D, Tong Z, Song Y, Han Y, Pei D, Pang X, Zhai J, Li M, Cui B, Qi Z, et al. Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol. 2004;186(15):5147–52.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Li Y, Cui Y, Hauck Y, Platonov ME, Dai E, Song Y, Guo Z, Pourcel C, Dentovskaya SV, Anisimov AP, et al. Genotyping and phylogenetic analysis of Yersinia pestis by MLVA: insights into the worldwide expansion of Central Asia plague foci. PLoS One. 2009;4(6):e6000.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Motin VL, Georgescu AM, Elliott JM, Hu P, Worsham PL, Ott LL, Slezak TR, Sokhansanj BA, Regala WM, Brubaker RR, et al. Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD). J Bacteriol. 2002;184(4):1019–27.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hai R, Yu DZ, Wei JC, Xia LX, Shi XM, Zhang ZK, Zhang EM. Molecular biological characteristics and genetic significance of Yersinia pestis in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2004;25(6):509–13.PubMedGoogle Scholar
  42. 42.
    Zhou D, Han Y, Song Y, Huang P, Yang R. Comparative and evolutionary genomics of Yersinia pestis. Microbes Infect. 2004;6(13):1226–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Golubov A, Neubauer H, Nolting C, Heesemann J, Rakin A. Structural organization of the pFra virulence-associated plasmid of rhamnose-positive Yersinia pestis. Infect Immun. 2004;72(10):5613–21.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Platonova ME, Evseevaa VV, Efremenkob DV, Afanas’evc MV, Verzhutskic DV, Kuznetsovab IV, Shestopalovc MY, Dentovskayaa SV, Kulichenkob AN, Balakhonovc SV, et al. Intraspecies classification of rhamnose-positive Yersinia pestis strains from natural plague foci of Mongolia. Mol Genet Microbiol Virol. 2015;30(1):24–9.CrossRefGoogle Scholar
  45. 45.
    Cui Y, Li Y, Gorge O, Platonov ME, Yan Y, Guo Z, Pourcel C, Dentovskaya SV, Balakhonov SV, Wang X, et al. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One. 2008;3(7):e2652.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cornelis GR, Wolf-Watz H. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol. 1997;23(5):861–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Hinnebusch BJ, Rudolph AE, Cherepanov P, Dixon JE, Schwan TG, Forsberg A. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science. 2002;296(5568):733–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Dong X, YU D. Plasmids in Yersinia pestis: functions and their role in epidemiology. Yu Fang Yi Xue Qing Bao Za Zhi. 1994;10(3):138–44.Google Scholar
  49. 49.
    Filippov AA, Solodovnikov NS, Kookleva LM, Protsenko OA. Plasmid content in Yersinia pestis strains of different origin. FEMS Microbiol Lett. 1990;55(1-2):45–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Dong XQ, Lindler LE, Chu MC. Complete DNA sequence and analysis of an emerging cryptic plasmid isolated from Yersinia pestis. Plasmid. 2000;43(2):144–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Dong X, Ye F, Peng H. Geographic distribution and feature of Yersinia pestis plasmid isolated from Yunnan province. Zhonghua Liu Xing Bing Xue Za Zhi. 2001;22(5):344–7.PubMedGoogle Scholar
  52. 52.
    Chu MC, Dong XQ, Zhou X, Garon CF. A cryptic 19-kilobase plasmid associated with U.S. isolates of Yersinia pestis: a dimer of the 9.5-kilobase plasmid. AmJTrop Med Hyg. 1998;59(5):679–86.Google Scholar
  53. 53.
    Song Y, Tong Z, Wang J, Wang L, Guo Z, Han Y, Zhang J, Pei D, Zhou D, Qin H, et al. Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res. 2004;11(3):179–97.PubMedCrossRefGoogle Scholar
  54. 54.
    Xu F, Yang Z, Li L, Zhao F. An analysis of plasmid profiles of Yersinia pestis isolated from natural plague foci in Xinjiang, China (in Chinese). End Dis Bull. 1997;12(1):12–5.Google Scholar
  55. 55.
    Leal NC, de Almeida AM, Ferreira LC. Plasmid composition and virulence-associated factors of Yersinia pestis isolates from a plague outbreak at the Paraiba State, Brazil. Rev Inst Med Trop Sao Paulo. 1989;31(5):295–300.PubMedCrossRefGoogle Scholar
  56. 56.
    Cavalcanti YV, Leal NC, De Almeida AM. Typing of Yersinia pestis isolates from the state of Ceara, Brazil. Lett Appl Microbiol. 2002;35(6):543–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, Courvalin P. Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med. 1997;337(10):677–80.PubMedCrossRefGoogle Scholar
  58. 58.
    Guiyoule A, Gerbaud G, Buchrieser C, Galimand M, Rahalison L, Chanteau S, Courvalin P, Carniel E. Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis. 2001;7(1):43–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Guiyoule A, Grimont F, Iteman I, Grimont PA, Lefevre M, Carniel E. Plague pandemics investigated by ribotyping of Yersinia pestis strains. J Clin Microbiol. 1994;32(3):634–41.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Pei D, Pang X, Song Y, Zhai J, Chen Z, Liu H, Guo Z, Wang J, Yang R. Fluorescent amplified fragment length polymorphism for genotyping Yersinia pestis. Chi J End. 2004;23(3):210–4.Google Scholar
  61. 61.
    Guiyoule A, Rasoamanana B, Buchrieser C, Michel P, Chanteau S, Carniel E. Recent emergence of new variants of Yersinia pestis in Madagascar. J Clin Microbiol. 1997;35(11):2826–33.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Lucier TS, Brubaker RR. Determination of genome size, macrorestriction pattern polymorphism, and nonpigmentation-specific deletion in Yersinia pestis by pulsed-field gel electrophoresis. J Bacteriol. 1992;174(7):2078–86.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Drancourt M, Roux V, Dang LV, Tran-Hung L, Castex D, Chenal-Francisque V, Ogata H, Fournier P-E, Crubézy E, Raoult D. Genotyping, orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis. 2004;10(9):1585–92.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Portnoy DA, Falkow S. Virulence-associated plasmids from Yersinia enterocolitica and Yersinia pestis. J Bacteriol. 1981;148(3):877–83.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Protsenko OA, Filippov AA, Kutyrev VV. Integration of the plasmid encoding the synthesis of capsular antigen and murine toxin into Yersinia pestis chromosome. Microb Pathog. 1991;11(2):123–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Simonet M, Riot B, Fortineau N, Berche P. Invasion production by Yersinia pestis is abolished by insertion of an IS200-like element within the inv gene. Infect Immun. 1996;64(1):375–9.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Odaert M, Devalckenaere A, Trieu-Cuot P, Simonet M. Molecular characterization of IS1541 insertions in the genome of Yersinia pestis. J Bacteriol. 1998;180(1):178–81.PubMedPubMedCentralGoogle Scholar
  68. 68.
    McDonough KA, Hare JM. Homology with a repeated Yersinia pestis DNA sequence IS100 correlates with pesticin sensitivity in Yersinia pseudotuberculosis. J Bacteriol. 1997;179(6):2081–5.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Klevytska AM, Price LB, Schupp JM, Worsham PL, Wong J, Keim P. Identification and characterization of variable-number tandem repeats in the Yersinia pestis genome. J Clin Microbiol. 2001;39(9):3179–85.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Adair DM, Worsham PL, Hill KK, Klevytska AM, Jackson PJ, Friedlander AM, Keim P. Diversity in a variable-number tandem repeat from Yersinia pestis. J Clin Microbiol. 2000;38(4):1516–9.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Huang F, Yu D, Hai R, Cai H. Study on the application of random amplified polymorphic DNA in Yersinia pestis genotyping. Zhonghua Liu Xing Bing Xue Za Zhi. 2000;21(6):424–6.PubMedGoogle Scholar
  72. 72.
    Yu DZ, Hai R, Dong XQ, Li M, Xia LX, Shi XM, Wei JC, Cui BZ, Wang P, Sun LZ. Genetic analysis of Yersinia pestis strains isolated in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2003;24(11):1005–9.PubMedGoogle Scholar
  73. 73.
    Smith CL, Condemine G. New approaches for physical mapping of small genomes. J Bacteriol. 1990;172(3):1167–72.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Arbeit RD, Arthur M, Dunn R, Kim C, Selander RK, Goldstein R. Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field electrophoresis to molecular epidemiology. J Infect Dis. 1990;161(2):230–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Bercovier H, Alonso JM, Bentaiba ZN, Brault J, Mollaret HH. Contribution to the definition and the taxonomy of Yersinia enterocolitica. Contrib Microbiol Immunol. 1979;5:12–22.PubMedGoogle Scholar
  76. 76.
    Filippov AA, Oleinikov PV, Motin VL, Protsenko OA, Smirnov GB. Sequencing of two Yersinia pestis IS elements, IS285 and IS100. Contrib Microbiol Immunol. 1995;13:306–9.PubMedGoogle Scholar
  77. 77.
    Rakin A, Heesemann J. The established Yersinia pestis biovars are characterized by typical patterns of I-CeuI restriction fragment length polymorphism. Mol Gen Mikrobiol Virusol. 1995;3:26–9.PubMedGoogle Scholar
  78. 78.
    Huang XZ, Chu MC, Engelthaler DM, Lindler LE. Genotyping of a homogeneous group of Yersinia pestis strains isolated in the United States. J Clin Microbiol. 2002;40(4):1164–73.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Grimont F, Grimont PA. Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur Microbiol. 1986;137B(2):165–75.PubMedCrossRefGoogle Scholar
  80. 80.
    Stull TL, LiPuma JJ, Edlind TD. A broad-spectrum probe for molecular epidemiology of bacteria: ribosomal RNA. J Infect Dis. 1988;157(2):280–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Grimont F, Chevrier D, Grimont PA, Lefevre M, Guesdon JL. Acetylaminofluorene-labelled ribosomal RNA for use in molecular epidemiology and taxonomy. Res Microbiol. 1989;140(7):447–54.PubMedCrossRefGoogle Scholar
  82. 82.
    Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature. 2001;413(6855):523–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Deng W, Burland V, Plunkett 3rd G, Boutin A, Mayhew GF, Liss P, Perna NT, Rose DJ, Mau B, Zhou S, et al. Genome sequence of Yersinia pestis KIM. J Bacteriol. 2002;184(16):4601–11.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Grif K, Dierich MP, Much P, Hofer E, Allerberger F. Identifying and subtyping species of dangerous pathogens by automated ribotyping. Diagn Microbiol Infect Dis. 2003;47:313–20.PubMedCrossRefGoogle Scholar
  85. 85.
    Mahillon J, Chandler M. Insertion sequences. Microbiol Mol Biol Rev. 1998;62(3):725–74.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Yang R, Wang J, Lin W, Li Y, Guo Z. Amplification of rDNA from Escherichia coli as probes for bacterial ribotyping. Zhonghua Liu Xing Bing Xue Za Zhi. 1992;13(Suppl2):156–9.Google Scholar
  87. 87.
    Leclercq AJ, Torrea G, Chenal-Francisque V, Carniel E. 3 IS-RFLP: a powerful tool for geographical clustering of global isolates of Yersinia pestis. Adv Exp Med Biol. 2007;603:322–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Lindsay JA. Typing pathogenic bugs on the net. Mol Med Today. 2000;6:100.CrossRefGoogle Scholar
  89. 89.
    Suntsova VV, Suntsova NI. Ecological aspects of evolution of the plague microbe Yersinia pestis and the genesis of natural foci. Biol Bull. 2000;27(6):541–52.CrossRefGoogle Scholar
  90. 90.
    Rachman C, Kabadjova P, Valcheva R, Prevost H, Dousset X. Identification of Carnobacterium species by restriction fragment length polymorphism of the 16S-23S rRNA gene intergenic spacer region and species-specific PCR. Appl Environ Microbiol. 2004;70(8):4468–77.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Catry B, Baele M, Opsomer G, de Kruif A, Decostere A, Haesebrouck F. tRNA-intergenic spacer PCR for the identification of Pasteurella and Mannheimia spp. Vet Microbiol. 2004;98(3–4):251–60.PubMedCrossRefGoogle Scholar
  92. 92.
    Vitorino L, Ze-Ze L, Sousa A, Bacellar F, Tenreiro R. rRNA intergenic spacer regions for phylogenetic analysis of Rickettsia species. Ann N Y Acad Sci. 2003;990:726–33.PubMedCrossRefGoogle Scholar
  93. 93.
    Song Y, Liu C, Molitoris D, Tomzynski TJ, Mc Teague M, Read E, Finegold SM. Use of 16S-23S rRNA spacer-region (SR)-PCR for identification of intestinal clostridia. Syst Appl Microbiol. 2002;25(4):528–35.PubMedCrossRefGoogle Scholar
  94. 94.
    Rachman CN, Kabadjova P, Prevost H, Dousset X. Identification of Lactobacillus alimentarius and Lactobacillus farciminis with 16S–23S rDNA intergenic spacer region polymorphism and PCR amplification using species-specific oligonucleotide. J Appl Microbiol. 2003;95(6):1207–16.PubMedCrossRefGoogle Scholar
  95. 95.
    Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Ng J, Munro K, Alatossava T. Identification of Lactobacillus isolates from the gastrointestinal tract, silage, and yoghurt by 16S–23S rRNA gene intergenic spacer region sequence comparisons. Appl Environ Microbiol. 1999;65(9):4264–7.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Zhou D, Han Y, Song Y, Tong Z, Wang J, Guo Z, Pei D, Pang X, Zhai J, Li M, et al. DNA microarray analysis of genome dynamics in Yersinia pestis: insights into bacterial genome microevolution and niche adaptation. J Bacteriol. 2004;186(15):5138–46.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Raoult D, Aboudharam G, Crubezy E, Larrouy G, Ludes B, Drancourt M. Molecular identification by “suicide PCR” of Yersinia pestis as the agent of medieval black death. Proc Natl Acad Sci U S A. 2000;97(23):12800–3.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc Natl Acad Sci U S A. 1998;95(21):12637–40.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Gilbert MT, Cuccui J, White W, Lynnerup N, Titball RW, Cooper A, Prentice MB. Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology. 2004;150(Pt 2):341–54.PubMedCrossRefGoogle Scholar
  100. 100.
    Wood J, DeWitte-Avina S. Was the Black Death yersinial plague? Lancet Infect Dis. 2004;4(8):485.PubMedCrossRefGoogle Scholar
  101. 101.
    Wood J, DeWitte-Avina S. Was the Black Death yersinial plague? Lancet Infect Dis. 2003;3(6):327–8. discussion 328.PubMedCrossRefGoogle Scholar
  102. 102.
    Prentice MB, Gilbert T, Cooper A. Was the Black Death caused by Yersinia pestis? Lancet Infect Dis. 2004;4(2):72.PubMedCrossRefGoogle Scholar
  103. 103.
    Wood JW, Ferrell RJ, Dewitte-Avina SN. The temporal dynamics of the fourteenth-century Black Death: new evidence from English ecclesiastical records. Hum Biol. 2003;75(4):427–48.PubMedCrossRefGoogle Scholar
  104. 104.
    Raoult D, Drancourt M. Cause of Black Death. Lancet Infect Dis. 2002;2(8):459.PubMedCrossRefGoogle Scholar
  105. 105.
    Pepinski W, Janica J, Aleksandrowicz-Bukin M, Skawronska M, Koc-Zorawska E, Niemcunowicz-Janica A. Population genetics of 10 short tandem repeat (STR) loci in a population sample of the ethnic group of Polish Tatars living in the Podlasie area (Northeastern Poland). Folia Morphol (Warsz). 2004;63(2):249–52.Google Scholar
  106. 106.
    Kondopoulou H, Kouvatsi A, Triantaphyllidis C. Forensic evaluation of 10 STRs and two minisatellite loci in the Greek population. Forensic Sci Int. 2001;124(2-3):228–30.PubMedCrossRefGoogle Scholar
  107. 107.
    Parra A, Fernandez-Llario P, Tato A, Larrasa J, Garcia A, Alonso JM, Hermoso de Mendoza M, Hermoso de Mendoza J. Epidemiology of Mycobacterium bovis infections of pigs and wild boars using a molecular approach. Vet Microbiol. 2003;97(1-2):123–33.PubMedCrossRefGoogle Scholar
  108. 108.
    Banu S, Gordon SV, Palmer S, Islam MR, Ahmed S, Alam KM, Cole ST, Brosch R. Genotypic analysis of Mycobacterium tuberculosis in Bangladesh and prevalence of the Beijing strain. J Clin Microbiol. 2004;42(2):674–82.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Crawford JT. Genotyping in contact investigations: a CDC perspective. Int J Tuberc Lung Dis. 2003;7(12 Suppl 3):S453–7.PubMedGoogle Scholar
  110. 110.
    Sabat A, Krzyszton-Russjan J, Strzalka W, Filipek R, Kosowska K, Hryniewicz W, Travis J, Potempa J. New method for typing Staphylococcus aureus strains: multiple-locus variable-number tandem repeat analysis of polymorphism and genetic relationships of clinical isolates. J Clin Microbiol. 2003;41(4):1801–4.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Savine E, Warren RM, van der Spuy GD, Beyers N, van Helden PD, Locht C, Supply P. Stability of variable-number tandem repeats of mycobacterial interspersed repetitive units from 12 loci in serial isolates of Mycobacterium tuberculosis. J Clin Microbiol. 2002;40(12):4561–6.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kim W, Hong YP, Yoo JH, Lee WB, Choi CS, Chung SI. Genetic relationships of Bacillus anthracis and closely related species based on variable-number tandem repeat analysis and BOX-PCR genomic fingerprinting. FEMS Microbiol Lett. 2002;207(1):21–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Chanchaem W, Palittapongarnpim P. A variable number of tandem repeats result in polymorphic alpha -isopropylmalate synthase in Mycobacterium tuberculosis. Tuberculosis (Edinb). 2002;82(1):1–6.CrossRefGoogle Scholar
  114. 114.
    van Belkum A, Scherer S, van Leeuwen W, Willemse D, van Alphen L, Verbrugh H. Variable number of tandem repeats in clinical strains of Haemophilus influenzae. Infect Immun. 1997;65(12):5017–27.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Le Fleche P, Hauck Y, Onteniente L, Prieur A, Denoeud F, Ramisse V, Sylvestre P, Benson G, Ramisse F, Vergnaud G. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis. BMC Microbiol. 2001;1(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Pourcel C, Andre-Mazeaud F, Neubauer H, Ramisse F, Vergnaud G. Tandem repeats analysis for the high resolution phylogenetic analysis of Yersinia pestis. BMC Microbiol. 2004;4(1):22.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Denoeud F, Vergnaud G. Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains: a web-based resource. BMC Bioinform. 2004;5(1):4.CrossRefGoogle Scholar
  118. 118.
    Li Y, Dai E, Cui Y, Li M, Zhang Y, Wu M, Zhou D, Guo Z, Dai X, Cui B, et al. Different region analysis for genotyping Yersinia pestis isolates from China. PLoS One. 2008;3(5):e2166.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM, Feldkamp M, Kusecek B, Vogler AJ, Li Y, et al. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet. 2010;42(12):1140–3.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Cui Y, Yu C, Yan Y, Li D, Li Y, Jombart T, Weinert LA, Wang Z, Guo Z, Xu L, et al. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A. 2013;110(2):577–82.PubMedCrossRefGoogle Scholar
  121. 121.
    Comas I, Homolka S, Niemann S, Gagneux S. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One. 2009;4(11):e7815.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Li Y, Cui Y, Cui B, Yan Y, Yang X, Wang H, Qi Z, Zhang Q, Xiao X, Guo Z, et al. Features of variable number of tandem repeats in Yersinia pestis and the development of a hierarchical genotyping scheme. PLoS One. 2013;8(6):e66567.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Pennisi E. The CRISPR craze. Science. 2013;341(6148):833–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167–70.PubMedCrossRefGoogle Scholar
  127. 127.
    Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol. 2010;64:475–93.PubMedCrossRefGoogle Scholar
  128. 128.
    Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010;11(3):181–90.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. 2008;190(4):1401–12.PubMedCrossRefGoogle Scholar
  130. 130.
    Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.PubMedCrossRefGoogle Scholar
  131. 131.
    Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190(4):1390–400.PubMedCrossRefGoogle Scholar
  132. 132.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.PubMedCrossRefGoogle Scholar
  133. 133.
    Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–75.PubMedCrossRefGoogle Scholar
  134. 134.
    Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151(Pt 3):653–63.PubMedCrossRefGoogle Scholar
  135. 135.
    Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82.PubMedCrossRefGoogle Scholar
  136. 136.
    Goyal M, Saunders NA, van Embden JD, Young DB, Shaw RJ. Differentiation of Mycobacterium tuberculosis isolates by spoligotyping and IS6110 restriction fragment length polymorphism. J Clin Microbiol. 1997;35(3):647–51.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Liu F, Barrangou R, Gerner-Smidt P, Ribot EM, Knabel SJ, Dudley EG. Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica. Appl Environ Microbiol. 2011;77(6):1946–56.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Bachmann NL, Petty NK, Ben Zakour NL, Szubert JM, Savill J, Beatson SA. Genome analysis and CRISPR typing of Salmonella enterica serovar Virchow. BMC Genomics. 2014;15:389.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kovanen SM, Kivisto RI, Rossi M, Hanninen ML. A combination of MLST and CRISPR typing reveals dominant Campylobacter jejuni types in organically farmed laying hens. J Appl Microbiol. 2014;117(1):249–57.PubMedCrossRefGoogle Scholar
  140. 140.
    Vergnaud G, Li Y, Gorge O, Cui Y, Song Y, Zhou D, Grissa I, Dentovskaya SV, Platonov ME, Rakin A, et al. Analysis of the three Yersinia pestis CRISPR loci provides new tools for phylogenetic studies and possibly for the investigation of ancient DNA. Adv Exp Med Biol. 2007;603:327–38.PubMedCrossRefGoogle Scholar
  141. 141.
    Riehm JM, Vergnaud G, Kiefer D, Damdindorj T, Dashdavaa O, Khurelsukh T, Zoller L, Wolfel R, Le Fleche P, Scholz HC. Yersinia pestis lineages in Mongolia. PLoS One. 2012;7(2):e30624.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007. doi: 10.1093/nar/gkm1360.
  143. 143.
    Grissa I, Vergnaud G, Pourcel C. CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2008;36:W145–8.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Ochman H, Moran NA. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science. 2001;292(5519):1096–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Hacker J, Hentschel U, Dobrindt U. Prokaryotic chromosomes and disease. Science. 2003;301(5634):790–3.PubMedCrossRefGoogle Scholar
  146. 146.
    Dai E, Tong Z, Wang X, Li M, Cui B, Dai R, Zhou D, Pei D, Song Y, Zhang J, et al. Identification of different regions among strains of Yersinia pestis by suppression subtractive hybridization. Res Microbiol. 2005;156(7):785–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Platonov ME, Evseeva VV, Svetoch TE, Efremenko DV, Kuznetsova IV, Dentovskaia SV, Kulichenko AN, Anisimov AP. The phylogeography of the Yersinia pestis vole strains isolated from the natural foci of caucasian region. Mol Gen Mikrobiol Virusol. 2012;3:18–21.PubMedGoogle Scholar
  148. 148.
    Roumagnac P, Weill FX, Dolecek C, Baker S, Brisse S, Chinh NT, Le TA, Acosta CJ, Farrar J, Dougan G, et al. Evolutionary history of Salmonella typhi. Science. 2006;314(5803):1301–4.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Pearson T, Busch JD, Ravel J, Read TD, Rhoton SD, U’Ren JM, Simonson TS, Kachur SM, Leadem RR, Cardon ML, et al. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci U S A. 2004;101(37):13536–41.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Alland D, Whittam TS, Murray MB, Cave MD, Hazbon MH, Dix K, Kokoris M, Duesterhoeft A, Eisen JA, Fraser CM, et al. Modeling bacterial evolution with comparative-genome-based marker systems: application to Mycobacterium tuberculosis evolution and pathogenesis. J Bacteriol. 2003;185(11):3392–9.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Harbeck M, Seifert L, Hansch S, Wagner DM, Birdsell D, Parise KL, Wiechmann I, Grupe G, Thomas A, Keim P, et al. Yersinia pestis DNA from skeletal remains from the 6(th) century AD reveals insights into Justinianic Plague. PLoS Pathog. 2013;9(5):e1003349.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, Enk J, Birdsell DN, Kuch M, Lumibao C, et al. Yersinia pestis and the plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis. 2014;14(4):319–26.PubMedCrossRefGoogle Scholar
  153. 153.
    Rasmussen S, Allentoft ME, Nielsen K, Orlando L, Sikora M, Sjogren KG, Pedersen AG, Schubert M, Van Dam A, Kapel CM, et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years Ago. Cell. 2015;163(3):571–82.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Wood F. The Silk Road: two thousand years in the heart of Asia. 1st ed. Berkeley: University of California Press; 2002.Google Scholar
  155. 155.
    Yang B. Horses, silver, and cowries: Yunnan in global perspective. J World Hist. 2004;15(3):281–322.CrossRefGoogle Scholar
  156. 156.
    Morelli G, Song Y, Mazzoni CJ, Eppinger MPR, Wagner DM, Feldkamp M, Kusecek B, Vogler AJ, Li Y et al. Plague out of China, again and again. Nat Genet 2010;In Press.Google Scholar
  157. 157.
    Prentice MB, Rahalison L. Plague. Lancet. 2007;369(9568):1196–207.PubMedCrossRefGoogle Scholar
  158. 158.
    Abath FG, Almeida AM, Ferreira LC. Electrophoretic characterisation of the outer membrane proteins of Yersinia pestis isolated in north-east Brazil. Epidemiol Infect. 1989;103(3):595–602.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Abath FG, Ferreira LC. Comparative studies of Yersinia pestis outer membrane isolation techniques and their potential use in plaque epidemiology. Rev Inst Med Trop Sao Paulo. 1990;32(2):78–83.PubMedCrossRefGoogle Scholar
  160. 160.
    Song Y, Guo Z, Zhang M, Yang R, Zhao M, Cong X, Zhang C. Cellular fatty acids analysis of Yersinia pestis strains in China. Zhonghua Wei Sheng Wu Yu Mian Yi Xue Za Zhi. 2002.Google Scholar
  161. 161.
    Tan Y, Wu M, Liu H, Dong X, Guo Z, Song Z, Li Y, Cui Y, Song Y, Du Z, et al. Cellular fatty acids as chemical markers for differentiation of Yersinia pestis and Yersinia pseudotuberculosis. Lett Appl Microbiol. 2010;50(1):104–11.PubMedCrossRefGoogle Scholar
  162. 162.
    Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. 2015;6:791.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Wahl KL, Wunschel SC, Jarman KH, Valentine NB, Petersen CE, Kingsley MT, Zartolas KA, Saenz AJ. Analysis of microbial mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem. 2002;74(24):6191–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Liu H, Du Z, Wang J, Yang R. Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2007;73(6):1899–907.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Ayyadurai S, Flaudrops C, Raoult D, Drancourt M. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. BMC Microbiol. 2010;10:285.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Zhizhen Qi
    • 1
  • Yujun Cui
    • 2
  • Qingwen Zhang
    • 1
  • Ruifu Yang
    • 2
    Email author
  1. 1.Qinghai Provincial Key Laboratory for Plague Control and ResearchQinghai Institute for Endemic Disease Prevention and ControlXiningChina
  2. 2.Beijing Institute of Microbiology and EpidemiologyBeijingChina

Personalised recommendations