Advertisement

Plague: A Disease Which Changed the Path of Human Civilization

  • Barbara BramantiEmail author
  • Nils Chr. Stenseth
  • Lars Walløe
  • Xu Lei
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 918)

Abstract

Plague caused by Yersinia pestis is a zoonotic infection, i.e., it is maintained in wildlife by animal reservoirs and on occasion spills over into human populations, causing outbreaks of different entities. Large epidemics of plague, which have had significant demographic, social, and economic consequences, have been recorded in Western European historical documents since the sixth century. Plague has remained in Europe for over 1400 years, intermittently disappearing, yet it is not clear if there were reservoirs for Y. pestis in Western Europe or if the pathogen was rather reimported on different occasions from Asian reservoirs by human agency. The latter hypothesis thus far seems to be the most plausible one, as it is sustained by both ecological and climatological evidence, helping to interpret the phylogeny of this bacterium.

Keywords

Yersinia pestis Outbreak Pandemics Historic Civilization 

References

  1. 1.
    Avery H. Plague churches, monuments and memorials. Proc R Soc Med. 1966;59(2):110–6.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Hatcher J. The Black Death: an intimate history. London: Weidenfeld & Nicolson; 2010.Google Scholar
  3. 3.
    Walløe L. Medieval and modern bubonic plague: some clinical continuities. Med Hist Suppl. 2008;52(27):59–73.Google Scholar
  4. 4.
    Rosen W. Justinian’s flea: plague, empire, and the birth of Europe. London: Penguin; 2007.Google Scholar
  5. 5.
    Little LK, Rome AAI. Plague and the end of antiquity: the pandemic of 541–750. Cambridge: Cambridge University Press in association with The American Academy in Rome; 2007.Google Scholar
  6. 6.
    Galvani AP, Slatkin M. Evaluating plague and smallpox as historical selective pressures for the CCR5-Δ32 HIV-resistance allele. Proc Natl Acad Sci. 2003;100(25):15276–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cohn Jr SK. Epidemiology of the Black Death and successive waves of plague. Med Hist Suppl. 2008;52(27):74–100.Google Scholar
  8. 8.
    Liu Y. The atlas of plague and its environment in the People’s Republic of China. Beijing: Science Press; 2000.Google Scholar
  9. 9.
    Lien-Teh W, Chun J, Pollitzer R, Wu C. Plague: a manual for medical and public health workers. Am J Public Health Nations Health. 1936;26(10):1049–50.CrossRefGoogle Scholar
  10. 10.
    Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, Carniel E, Gage KL, Leirs H, Rahalison L. Plague: past, present, and future. PLoS Med. 2008;5(1):e3.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cipolla CM. Cristofano e la peste: un caso di storia del sistema sanitario in Toscana nell’età di Galileo, vol. 166. Bologna: Il mulino; 1976.Google Scholar
  12. 12.
    Vasold M. Die Pest. Ende eines Mythos. Theiss Verlag, Stuttgart; 2003.Google Scholar
  13. 13.
    Yersin A. La peste bubonique à Hong Kong. Archives de médecine navale et coloniale. 1894;62:256–61.Google Scholar
  14. 14.
    Shannon JG, Bosio CF, Hinnebusch BJ. Dermal neutrophil, macrophage and dendritic cell responses to Yersinia pestis transmitted by fleas. PLoS Pathog. 2015;11(3):e1004734.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Barnett SA. Rat control in a plague outbreak in Malta. J Hyg. 1948;46(1):10–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mafart B, Brisou P, Bertherat E. Epidémiologie et prise en charge des épidémies de peste en Méditerranée au cours de la seconde guerre mondiale. Bulletin de la Société de Pathologie Exotique (1990). 2004;97(4):306–10.Google Scholar
  17. 17.
    Wherry WB. Plague among the ground squirrels of California. J Infect Dis. 1908;5(5):485–506.CrossRefGoogle Scholar
  18. 18.
    McCoy GW. Plague among ground squirrels in America. J Hyg. 1910;10(4):589–601.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Benedictow OJ. Yersinia pestis, the bacterium of plague, arose in East Asia. Did it spread westwards via the Silk Roads, the Chinese maritime expeditions of Zheng He or over the vast Eurasian populations of sylvatic (wild) rodents? J Asian Hist. 2013;47(1):1–31.CrossRefGoogle Scholar
  20. 20.
    McNeill WH. Plagues and peoples, A peregrine book, vol. 2. Harmondsworth: Penguin; 1979. p. 99.Google Scholar
  21. 21.
    Lorange EA, Race BL, Sebbane F, Hinnebusch BJ. Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis. 2005;191(11):1907–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Salkeld DJ, Stapp P. Seroprevalence rates and transmission of plague (Yersinia pestis) in mammalian carnivores. Vector Borne Zoonotic Dis. 2006;6(3):231–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Mollaret HH. Remarques sur la communication de MM. Brygoo et Dodin à propos de la peste tellurique et de la peste de fouissement, Données malgaches. Bull Soc Pathol Exot Filiales (Paris). 1965;58(2):140–54.Google Scholar
  24. 24.
    Ayyadurai S, Houhamdi L, Lepidi H, Nappez C, Raoult D, Drancourt M. Long-term persistence of virulent Yersinia pestis in soil. Microbiology. 2008;154(Pt 9):2865–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Gong Z, Yu X, Liu Q, Ye R, Lu L, Xu l, Zhang J, Li C, Bai X, Fang X. Ecological-geographic landscapes of natural plague foci in China VI. Biological characteristics of natural vectors of Yersinia pestis. Chin J Epidemiol. 2012;33(008):818–22.Google Scholar
  26. 26.
    Qin C, Xu L, Zhang R, Liu Q, Li G, Fang X. Ecological-geographic landscapes of natural plague foci in China V. Biological characteristics of major natural reservoirs of Yersinia pestis. Chin J Epidemiol. 2012;33(7):692–7.Google Scholar
  27. 27.
    Fang X, Xu L, Liu Q, Zhang R. Ecological-geographic landscapes of natural plague foci in China I. Eco-geographic landscapes of natural plague foci. Chin J Epidemiol. 2011;32(12):1232–6.Google Scholar
  28. 28.
    Chanteau S, Ratsifasoamanana L, Rasoamanana B, Rahalison L, Randriambelosoa J, Roux J, Rabeson D. Plague, a reemerging disease in Madagascar. Emerg Infect Dis. 1998;4(1):101–4.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Anisimov AP, Lindler LE, Pier GB. Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev. 2004;17(2):434–64.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hinnebusch BJ. The evolution of flea-borne transmission in Yersinia pestis. Curr Issues Mol Biol. 2005;7(2):197–212.PubMedGoogle Scholar
  31. 31.
    Gage KL, Kosoy MY. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol. 2005;50(50):505–28.PubMedCrossRefGoogle Scholar
  32. 32.
    Samia NI, Kausrud KL, Heesterbeek H, Ageyev V, Begon M, Chan KS, Stenseth NC. Dynamics of the plague-wildlife-human system in Central Asia are controlled by two epidemiological thresholds. Proc Natl Acad Sci. 2011;108(35):14527–32.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Stenseth NC, Samia NI, Viljugrein H, Kausrud KL, Begon M, Davis S, Leirs H, Dubyanskiy VM, Esper J, Ageyev VS, et al. Plague dynamics are driven by climate variation. Proc Natl Acad Sci U S A. 2006;103(35):13110–5.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Reijniers J, Davis S, Begon M, Heesterbeek JA, Ageyev VS, Leirs H. A curve of thresholds governs plague epizootics in Central Asia. Ecol Lett. 2012;15(6):554–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Kausrud KL, Viljugrein H, Frigessi A, Begon M, Davis S, Leirs H, Dubyanskiy V, Stenseth NC. Climatically driven synchrony of gerbil populations allows large-scale plague outbreaks. Proc R Soc B Biol Sci. 2007;274(1621):1963–9.CrossRefGoogle Scholar
  36. 36.
    Hudson PJ, Cattadori IM. The Moran effect: a cause of population synchrony. Trends Ecol Evol. 1999;14(1):1–2.PubMedCrossRefGoogle Scholar
  37. 37.
    Koenig WD. Global patterns of environmental synchrony and the Moran effect. Ecography. 2002;25(25):283–8.CrossRefGoogle Scholar
  38. 38.
    Caten JL, Kartman L. Human plague in the United States, 1900–1966. J Am Med Assoc. 1968;205(6):333–6.CrossRefGoogle Scholar
  39. 39.
    Tollenaere C, Rahalison L, Ranjalahy M, Duplantier JM, Rahelinirina S, Telfer S, Brouat C. Susceptibility to Yersinia pestis experimental infection in wild Rattus rattus, reservoir of plague in Madagascar. Ecohealth. 2010;7(2):242–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Mustafa I. Bacterial diseases of dromedaries and bactrian camels. Rev Sci Tech Int Off Epizoot. 1987;6:391–405.CrossRefGoogle Scholar
  41. 41.
    Blanc G, Baltazard M. Rôle des ectoparasites humains dans la transmission de la peste. Bull Acad Natl Med. 1942;126:446–8.Google Scholar
  42. 42.
    Gani R, Leach S. Epidemiologic determinants for modeling pneumonic plague outbreaks. Emerg Infect Dis. 2004;10(4):608–14.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Butler T. Plague gives surprises in the first decade of the 21st century in the United States and worldwide. Am J Trop Med Hyg. 2013;89(4):788–93.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Richard V, Riehm JM, Herindrainy P, Soanandrasana R, Ratsitoharina M, Rakotomanana F, Andrianalimanana S, Scholz HC, Rajerison M. Pneumonic plague outbreak, northern Madagascar, 2011. Emerg Infect Dis. 2015;21(1):8–15.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Teh WL. The second pneumonic plague epidemic in Manchuria, 1920–21: I. A general survey of the outbreak and its course. J of Hyg (Lond). 1923;21(3):262–88.CrossRefGoogle Scholar
  46. 46.
    Persson B. Pestens gåta: Farsoter i det tidiga 1700-talets Skåne, vol. 5. Lund: Lund University; 2001.Google Scholar
  47. 47.
    Perry RD, Fetherston JD. Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev. 1997;10(1):35–66.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Prentice MB, Rahalison L. Plague. Lancet. 2007;369(9568):1196–207.PubMedCrossRefGoogle Scholar
  49. 49.
    Pollitzer R. Plague. Geneva: World Health Organization; 1954.Google Scholar
  50. 50.
    Pollitzer R. Plague studies. IX. Epidemiology. Bull World Health Organ. 1953;9(1):131–70.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Burroughs AL. Sylvatic plague studies: the vector efficiency of nine species of fleas compared with Xenopsylla cheopis. J Hyg (Lond). 1947;45(3):371–96.PubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bacot AW, Martin CJ. LXVII. Observations on the mechanism of the transmission of plague by fleas. J Hyg (Lond). 1914;13(Suppl):423–39.Google Scholar
  53. 53.
    Eisen RJ, Dennis DT, Gage KL. The role of early-phase transmission in the spread of Yersinia pestis. J Med Entomol. 2015;52(6):1183–92.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis. 2004;190(4):783–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Carniel E. Subtle genetic modifications transformed an enteropathogen into a flea-borne pathogen. Proc Natl Acad Sci U S A. 2014;111(52):18409–10.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Eisen RJ, Bearden SW, Wilder AP, Montenieri JA, Antolin MF, Gage KL. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci U S A. 2006;103(42):15380–5.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ratovonjato J, Rajerison M, Rahelinirina S, Boyer S. Yersinia pestis in Pulex irritans fleas during plague outbreak, Madagascar. Emerg Infect Dis. 2014;20(8):1414–5.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Baltazard M, Bahmanyar M, Mostachfi P, Eftekhari M, Mofidi C. Recherches sur la peste en Inde. Bull World Health Organ. 1960;23(2–3):169–215.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Laudisoit A, Leirs H, Makundi RH, Van Dongen S, Davis S, Neerinckx S, Deckers J, Libois R. Plague and the human flea, Tanzania. Emerg Infect Dis. 2007;13(5):687–93.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hufthammer AK, Walløe L. Rats cannot have been intermediate hosts for Yersinia pestis during medieval plague epidemics in northern Europe. J Archaeol Sci. 2013;40(4):1752–9.CrossRefGoogle Scholar
  61. 61.
    Drancourt M, Houhamdi L, Raoult D. Yersinia pestis as a telluric, human ectoparasite-borne organism. Lancet Infect Dis. 2006;6(4):234–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Houhamdi L, Raoult D. Different genes govern Yersinia pestis pathogenicity in Caenorhabditis elegans and human lice. Microb Pathog. 2008;44(5):435–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Houhamdi L, Lepidi H, Drancourt M, Raoult D. Experimental model to evaluate the human body louse as a vector of plague. J Infect Dis. 2006;194(11):1589–96.PubMedCrossRefGoogle Scholar
  64. 64.
    Davis DE. The scarcity of rats and the Black Death: an ecological history. J Interdiscip Hist. 1986;16(3):455–70.CrossRefGoogle Scholar
  65. 65.
    Christakos G, Olea RA, Yu HL. Recent results on the spatiotemporal modelling and comparative analysis of Black Death and bubonic plague epidemics. Public Health. 2007;121(9):700–20.PubMedCrossRefGoogle Scholar
  66. 66.
    Harbeck M, Seifert L, Hänsch S, Wagner DM, Birdsell D, Parise KL, Wiechmann I, Grupe G, Thomas A, Keim P, Zöller L, Bramanti B, Riehm JM, Scholz HC. Yersinia pestis DNA from skeletal remains from the 6th century AD reveals insights into Justinianic Plague. PLoS Pathog. 2013;9(5):e1003349.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M, Kacki S, Vermunt M, Weston DA, Hurst D, Achtman M, Carniel E, Bramanti B. Distinct clones of Yersinia pestis caused the Black Death. PLoS Pathog. 2010;6(10):e1001134.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, McPhee JB, DeWitte SN, Meyer M, Schmedes S, Wood J, Earn DJ, Herring DA, Bauer P, Poinar HN, Krause J. A draft genome of Yersinia pestis from victims of the Black Death. Nature. 2011;478(7370):506–10.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, Enk J, Birdsell DN, Kuch M, Lumibao C, Poinar D, Pearson T, Fourment M, Golding B, Riehm JM, Earn DJ, Dewitte S, Rouillard JM, Grupe G, Wiechmann I, Bliska JB, Keim PS, Scholz HC, Holmes EC, Poinar H. Yersinia pestis and the plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis. 2014;14(4):319–26.PubMedCrossRefGoogle Scholar
  70. 70.
    Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR, Chenal-Francisque V, Worsham P, Thomson NR, Parkhill J, Lindler LE, Carniel E, Keim P. Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A. 2004;101(51):17837–42.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM, Feldkamp M, Kusecek B, Vogler AJ, Li Y, Cui Y, Thomson NR, Jombart T, Leblois R, Lichtner P, Rahalison L, Petersen JM, Balloux F, Keim P, Wirth T, Ravel J, Yang R, Carniel E, Achtman M. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet. 2010;42(12):1140–3.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cui Y, Yu C, Yan Y, Li D, Li Y, Jombart T, Weinert LA, Wang Z, Guo Z, Xu L, Zhang Y, Zheng H, Qin N, Xiao X, Wu M, Wang X, Zhou D, Qi Z, Du Z, Wu H, Yang X, Cao H, Wang H, Wang J, Yao S, Rakin A, Li Y, Falush D, Balloux F, Achtman M, Song Y, Wang J, Yang R. Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proc Natl Acad Sci U S A. 2013;110(2):577–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Ben-Ari T, Neerinckx S, Gage KL, Kreppel K, Laudisoit A, Leirs H, Stenseth NC. Plague and climate: scales matter. PLoS Pathog. 2011;7(9):e1002160.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Davis S, Trapman P, Leirs H, Begon M, Heesterbeek JAP. The abundance threshold for plague as a critical percolation phenomenon. Nature. 2008;454(7204):634–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Xu L, Stige LC, Kausrud KL, Ben AT, Wang S, Fang X, Schmid BV, Liu Q, Stenseth NC, Zhang Z. Wet climate and transportation routes accelerate spread of human plague. Proc R Soc B Biol Sci. 2014;281(1780):20133159.CrossRefGoogle Scholar
  76. 76.
    Xu L, Liu Q, Stige LC, Ben Ari T, Fang X, Chan KS, Wang S, Stenseth NC, Zhang Z. Nonlinear effect of climate on plague during the third pandemic in China. Proc Natl Acad Sci U S A. 2011;108(25):10214–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ben-Ari T, Neerinckx S, Agier L, Cazelles B, Xu L, Zhang Z, Fang X, Wang S, Liu Q, Stenseth NC. Identification of Chinese plague foci from long-term epidemiological data. Proc Natl Acad Sci U S A. 2012;109(21):8196–201.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zhang Z, Li Z, Tao Y, Chen M, Wen X, Xu L, Tian H, Stenseth NC. Relationship between increase rate of human plague in China and global climate index as revealed by cross-spectral and cross-wavelet analyses. Integr Zool. 2007;2(3):144–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Schmid BV, Büntgen U, Easterday WR, Ginzler C, Walløe L, Bramanti B, Stenseth NC. Climate-driven introduction of the Black Death and successive plague reintroductions into Europe. Proc Natl Acad Sci U S A. 2015;112(10):3020–5.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Xu L, Schmid BV, Liu J, Si X, Stenseth NC, Zhang Z. The trophic responses of two different rodent-vector-plague systems to climate change. Proc Biol Sci. 2015;282(1800):20141846.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Vogler AJ, Chan F, Nottingha R, Andersen G, Drees K, Beckstrom-Sternberg SM, Wagner DM, Chanteau S, Keim P. A decade of plague in Mahajanga, Madagascar: insights into the global maritime spread of pandemic plague. mBio. 2013;4(1):e00623–12.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wheelis M. Biological warfare at the 1346 Siege of Caffa. Emerg Infect Dis. 2002;8(9):971–5.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Coleman MP. A plague epidemic in voluntary quarantine. Int J Epidemiol. 1986;15(3):379–85.PubMedCrossRefGoogle Scholar
  84. 84.
    Seifert L, Wiechmann I, Harbeck M, Thomas A, Grupe G, Projahn M, Scholz HC, Riehm JM. Genotyping Yersinia pestis in historical plague: evidence for long-term persistence of Y. pestis in Europe from the 14th to the 17th century. PLoS One. 2016;11(1):e0145194.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bos KI, Herbig A, Sahl J, Waglechner N, Fourment M, Forrest SA, Klunk J, Schuenemann VJ, Poinar D, Kuch M, Golding GB, Dutour O, Keim P, Wagner DM, Holmes EC, Krause J, Poinar HN. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. eLife. 2016. doi: 10.7554/eLife.12994.
  86. 86.
    Devaux CA. Small oversights that led to the Great Plague of Marseille (1720–1723): lessons from the past. Infect Genet Evol. 2013;14:169–85.PubMedCrossRefGoogle Scholar
  87. 87.
    Haesser H. Lehrbuch der Geschichte der Medizin und der epidemischen Krankheiten. Jena: Hermann Duft Verlag; 1875 (Dritte Bearbeitung, Band 1, 2 und 3).Google Scholar
  88. 88.
    Ilmoni I. Bidrag til Nordens sjukdoms-historia [Contributions to the history of diseases in the Nordic countries]. Helsingfors [Helsinki]: J Simelii Arfvingar;1846, 1849, 1853 (1, 2 ock 3).Google Scholar
  89. 89.
    Walløe L. Plague and population: Norway 1350–1750. Avhandlinger (Norske videnskapsakademi), new series, No. 17. Oslo: University of Oslo, Department of Physiology; 1995.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Barbara Bramanti
    • 1
    Email author
  • Nils Chr. Stenseth
    • 1
  • Lars Walløe
    • 2
  • Xu Lei
    • 1
    • 3
  1. 1.Centre for Ecological and Evolutionary Synthesis (CEES), Department of BiosciencesUniversity of OsloOsloNorway
  2. 2.Department of Physiology, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
  3. 3.State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionChangpingPeople’s Republic of China

Personalised recommendations