1-D Photonic Crystals Fabricated by RF Sputtering Towards Photonic Applications

  • Sreeramulu Valligatla
  • A. Chiasera
  • S. Varas
  • A. Łukowiak
  • F. Scotognella
  • D. Narayana Rao
  • R. Ramponi
  • G. C. Righinig
  • M. Ferraria
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

A great technological and scientific challenge is related to the fabrication of confined structures where the light is confined in systems with characteristic dimensions scale from micro to nanometers. The nanotechnology, that allows the study of innovative functional materials and gives advances in the miniaturization, has opened the way to the manufacturing of such structures and focalize the attention of new features of light-matter interaction (Ristic D et. al, Proc ICTON Tu. B 5.2:1–5, 2013). An example concerns planar microcavities, or one-dimensional (1-D) photonic crystals, which are the simplest photonic band – gap (PBG) devices exploitable to manage the spectroscopic properties of luminescent species such as rare earth ions (Valligatla S, Chiasera A, Varas S, Bazzanella N, Narayana Rao D, Righini GC, Ferrari M, Opt Express 20:21214, 2012) and quantum dots (Jasieniak J, Sada C, Chiasera A, Ferrari M, Martucci A, Mulvaney P, Adv Funct Mater 18:3772, 2008). The fundamental optical principle for the photonic crystals is, “localization of light” (John S, Phys Rev Lett 58:2486, 1987) so that combination of photonic crystals and nonlinear optics leads us towards new nonlinear optical devices (Ma GH, Shen J, Rajiv K, Tamg SH, Zhang ZJ, Hua ZY, Appl Phys B 80:359, 2005; Valligatla S, Chiasera A, Krishna MBM, Varas S, Narayana Rao D, Ferrari M, Righini GC, Int Conf Fiber Opt Photon 2012:W1C.2).

References

  1. 1.
    Ristic, D. et al. (2013). Proceedings ICTON, Tu. B 5.2, 1–5.Google Scholar
  2. 2.
    Valligatla, S., Chiasera, A., Varas, S., Bazzanella, N., Narayana Rao, D., Righini, G. C., & Ferrari, M. (2012). Optics Express, 20, 21214.Google Scholar
  3. 3.
    Jasieniak, J., Sada, C., Chiasera, A., Ferrari, M., Martucci, A., & Mulvaney, P. (2008). Advanced Function Materials, 18, 3772.Google Scholar
  4. 4.
    John, S. (1987). Physical Review Letters, 58, 2486.Google Scholar
  5. 5.
    Ma, G. H., Shen, J., Rajiv, K., Tamg, S. H., Zhang Z. J., & Hua, Z. Y. (2005). Applied Physics B, 80, 359.Google Scholar
  6. 6.
    Valligatla, S., Chiasera, A., Krishna, M. B. M., Varas, S., Narayana Rao, D., Ferrari, M., & Righini, G. C. International Conference on Fiber Optics and Photonics – 2012, W1C.2.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Sreeramulu Valligatla
    • 1
    • 2
    • 3
  • A. Chiasera
    • 1
  • S. Varas
    • 1
  • A. Łukowiak
    • 4
  • F. Scotognella
    • 5
    • 6
  • D. Narayana Rao
    • 3
  • R. Ramponi
    • 5
  • G. C. Righinig
    • 7
  • M. Ferraria
    • 8
  1. 1.CNR-IFN CSMFO Lab. & FBK CMMTrentoItaly
  2. 2.Dipartimento di FisicaUniversità di TrentoTrentoItaly
  3. 3.School of PhysicsUniversity of HyderabadHyderabadIndia
  4. 4.Department of Spectroscopy of Excited StatesInstitute of Low Temperature and Structure Research Polish Academy of SciencesWroclawPoland
  5. 5.Dipartimento di Fisica and Istituto di Fotonica e Nanotecnolgie CNRPolitecnico di MilanoMilanoItaly
  6. 6.Center for Nano Science and Technology@PoliMiIstituto Italiano di TecnologiaMilanItaly
  7. 7.IFAC – CNR, MiPLabSesto FiorentinoItaly
  8. 8.Centro di Studi e Ricerche “Enrico Fermi”RomaItaly

Personalised recommendations