Advertisement

Medical Applications of Nanomaterials

  • Anna Vedda
  • Irene Villa
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

This chapter is devoted to an introduction to the fascinating field of nanomedicine. In particular, the role of material scientists in this interdisciplinary area will be discussed, by considering how the structural, morphological, and functional properties of nanoparticles can be designed for specific medical applications. Due to the large extent of the field, focus will be given to the optical applications of inorganic nanoparticles in medicine. These include in vitro and in vivo imaging, self-lighting photodynamic therapy, hyperthermia, and thermometry. Moreover some specific issues like self-absorption and autofluorescence, which turn out to be critical for the functionalization of luminescent nanoparticles, will be also described and discussed.

Keywords

Singlet Oxygen Photodynamic Therapy Rose Bengal Photothermal Therapy Hyperthermia Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are very grateful to Professors José Garcia Solé, Daniel Jaque, M. Bettinelli, and A. Speghini for the fruitful collaboration and discussions.

References

  1. 1.
    Li, C. (2014). A targeted approach to cancer imaging and therapy. Nature Materials, 13, 110.ADSCrossRefGoogle Scholar
  2. 2.
    Fahi, G. (1992). Nanotechnology in medicine. U.S. Pharmacopeial Convention, https://www.foresight.org/Updates/Update16/Update16.1.html#anchor576239
  3. 3.
    Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K., & Saltzman, W. M. (2015). A holistic approach to targeting disease with polymeric nanoparticles. Nature Reviews, 14, 239.Google Scholar
  4. 4.
    Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R., & Tsourkas, A. (2012). Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science, 38, 903.ADSCrossRefGoogle Scholar
  5. 5.
    Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293.CrossRefGoogle Scholar
  6. 6.
    Eustis, S., & El-Sayed, M. A. (2006). Why gold nanoparticles are more precious than pretty gold: Noble metal surface Plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 35, 209.CrossRefGoogle Scholar
  7. 7.
    Park, J.-H., Gu, L., von Maltzahn, G., Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2009). Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials, 8(331).Google Scholar
  8. 8.
    Welsher, K., Sherlock, S. P., & Dai, H. (2011). Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. PNAS, 108, 8943.ADSCrossRefGoogle Scholar
  9. 9.
    Weissleder, R., Nahrendorfand, M., & Pittet, M. J. (2014). Imaging macrophages with nanoparticles. Nature Materials, 13, 125.ADSCrossRefGoogle Scholar
  10. 10.
    Hilderbrandt, S. A., & Weissleder, S. (2010). Near-infrared fluorescence: application to in vivo molecular imaging. Current Opinion in Chemical Biology, 14, 71.CrossRefGoogle Scholar
  11. 11.
    Jacques, S. L. (2013). Optical properties of biological tissues: a review. Physics in Medicine and Biology, 58, R37.ADSCrossRefGoogle Scholar
  12. 12.
    Pansare, V. J., Hejazi, S., Faenza, W. J., & Prud’homme, R. K. (2012). Review of long-wavelength optical and NIR imaging materials: Contrast agents, fluorophores, and multifunctional nano carriers. Chemistry of Materials, 24, 812.CrossRefGoogle Scholar
  13. 13.
    Naczynski, D. J., Tan, M. C., Zevon, M., Wall, B., Kohl, J., Kulesa, A., Chen, S., Roth, C. M., Riman, R. E., & Moghe, P. V. (2013). Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature Communications, 4, 2199. doi: 10.1038/ncomms3199.ADSCrossRefGoogle Scholar
  14. 14.
    Villa, I., Vedda, A., Xochilt Cantarelli, I., Pedroni, M., Piccinelli, F., Bettinelli, M., Speghini, A., Quintanilla, M., Vetrone, F., Rocha, U., Jacinto, C., Carrasco, E., Sanz Rodríguez, F., Juarranz de la Cruz, Á., Haro Gonzalez, P., García Solé, J., & Jaque García, D. (2015). 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Research, 8, 649.CrossRefGoogle Scholar
  15. 15.
    Mc Keever, S. W. S. (1985). Thermoluminescence of solids. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. 16.
    Avouris, P., & Morgan, T. N. (1981). A tunneling model for the decay of luminescence in inorganic phosphors: The case of Zn2SiO4:Mn. Journal of Chemical Physics, 74, 4347.ADSCrossRefGoogle Scholar
  17. 17.
    Caratto, V., Locardi, F., Costa, G. A., Masini, R., Fasoli, M., Panzeri, L., Martini, M., Bottinelli, E., Gianotti, E., & Miletto, I. (2014). NIR persistent luminescence of lanthanide Ion-doped rare-earth oxycarbonates: The effect of dopants. ACS Applied Materials and Interfaces, 6, 17346.CrossRefGoogle Scholar
  18. 18.
    Lecointre, A., Viana, B., LeMasne, Q., Bessière, A., Chaneac, C., & Gourier, D. (2009). Red long-lasting luminescence in clinoenstatite. Journal of Luminescence, 129, 1527.ADSCrossRefGoogle Scholar
  19. 19.
    Lecointre, A., Bessiere, A., Viana, B., & Gourier, D. (2010). Red persistent luminescent silicate nanoparticles. Radiation Measurements, 45, 497.CrossRefGoogle Scholar
  20. 20.
    Maldiney, T., Lecointre, A., Viana, B., Bessièere, A., Bessodes, M., Gourier, D., Richard, C., & Scherman, D. (2011). Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. Journal of the American Chemical Society, 133, 11810.CrossRefGoogle Scholar
  21. 21.
    Pan, Z., Lu, Y.-Y., & Liu, F. (2012). Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nature Materials, 11, 58.ADSCrossRefGoogle Scholar
  22. 22.
    le Masne de Chermont, Q., Chanéac, C., Seguin, J., Pellé, F., Maîtrejean, S., Jolivet, J.-P., Gourier, D., Bessodes, M., & Scherman, D. (2007). Nanoprobes with near-infrared persistent luminescence for in vivo imaging. PNAS, 104, 9266.ADSCrossRefGoogle Scholar
  23. 23.
    Singh, S. K. (2014). Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications. RSC Advances, 4, 58674.CrossRefGoogle Scholar
  24. 24.
    Sun, M., Li, Z.-J., Liu, C.-L., Fu, H.-X., Shen, J.-S., & Zhang, H.-W. (2014). Persistent luminescent nanoparticles for super-longtime in vivo and in situ imaging with repeatable excitation. Journal of Luminescence, 145, 838.ADSCrossRefGoogle Scholar
  25. 25.
    Ueda, J., Shinoda, T., & Tanabe, S. (2013). Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 Ceramics. Optical Materials Experimental, 3, 787.CrossRefGoogle Scholar
  26. 26.
    Wang, X.-J., Jia, D., & Yen, W. M. (2003). Mn2+ activated green, yellow, and red long persistent phosphors. Journal of Luminescence, 102–103, 34.CrossRefGoogle Scholar
  27. 27.
    Maldiney, T., Bessière, A., Seguin, J., Teston, E., Sharma, S. K., Viana, B., Bos, A. J. J., Dorenbos, P., Bessodes, M., Gourier, D., Scherman, D., & Richard, C. (2014). Thein vivo activation of persistent nanophosphors for optical imaging of vascularization, tumors and grafted cells. Nature Materials, 13, 418.ADSCrossRefGoogle Scholar
  28. 28.
    Dougherty, T. J., Grindey, G. B., Fiel, R., Weishaupt, K. R., & Boyle, D. G. (1975). Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. Journal of the Nature Cancer Institute, 55, 115.CrossRefGoogle Scholar
  29. 29.
    Chen, W., & Zhang, J. (2006). Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 6, 1159.CrossRefGoogle Scholar
  30. 30.
    Chen, H., Wang, G. D., Chuang, Y.-J., Zhen, Z., Chen, X., Biddinger, P., Hao, Z., Liu, F., Shen, B., Pan, Z., & Xie, J. (2015). Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Letters, 15, 2249.ADSCrossRefGoogle Scholar
  31. 31.
    St Denis, T. G., Aziz, K., Waheed, A. A., Huang, Y.-Y., Sharma, S. K., Mroz, P., & Hamblin, M. R. (2011). Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochemical and Photobiological Sciences, 10(5), 792.CrossRefGoogle Scholar
  32. 32.
    Robertson, C. A., Hawkins Evans, D., & Abrahamse, H. (2009). Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. Journal of Photochemistry and Photobiology. B, 96, 1.CrossRefGoogle Scholar
  33. 33.
    Juzenas, P., Chen, W., Sun, Y.-P., Coelho, M. A. N., Generalov, R., Generalova, N., & Christensen, I. L. (2008). Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Delivery Reviews, 60, 1600.CrossRefGoogle Scholar
  34. 34.
    Tang, Y., Hu, J., Elmenoufy, A. H., & Yang, X. (2015). Highly efficient FRET system capable of deep photodynamic therapy established on X‐ray excited mesoporous LaF3:Tb scintillating nanoparticles. ACS Applied Materials and Interfaces, 7, 12261.CrossRefGoogle Scholar
  35. 35.
    Liu, Y., Chen, W., Wang, S., Joly, A. G., Westcott, S., & Woo, B. K. (2008). Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Applied Physics Letters, 92, 043901.ADSCrossRefGoogle Scholar
  36. 36.
    Bulin, A.-L., et al. (2013). X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. Journal of Physical Chemistry C, 117, 21583.CrossRefGoogle Scholar
  37. 37.
    Bulin, A.-L., Vasil’ev, A., Belsky, A., Amans, D., Ledoux, G., & Dujardin, C. (2015). Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect. Nanoscale, 7, 5744.ADSCrossRefGoogle Scholar
  38. 38.
    Ma, L., Zou, X., Bui, B., Chen, W., Song, K. H., & Solberg, T. (2014). X-ray excited ZnS:Cu, Co afterglow nanoparticles for photodynamic activation. Applied Physics Letters, 105, 013702.ADSCrossRefGoogle Scholar
  39. 39.
    Jaque, D., Martınez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., Rodrıguez, E. M., & Solé, J. G. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6, 9494.ADSCrossRefGoogle Scholar
  40. 40.
    Bednarkiewicz, A., Wawrzynczyk, D., Nyk, M., & Strek, W. (2011). Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors. Applied Physics B, 103, 847.CrossRefGoogle Scholar
  41. 41.
    Wawrzynczyk, D., Bednarkiewicz, A., Nyk, M., Strek, W., & Samoc, M. (2012). Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors. Nanoscale, 4, 6959.ADSCrossRefGoogle Scholar
  42. 42.
    Rocha, U., da Silva, C. J., Silva, W. F., Guedes, I., Benayas, A., Maestro, L. M., Elias, M. A., Bovero, E., van Veggel, F. C. J. M., Solé, J. A. G., & Jaque, D. (2013). Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano, 7, 1188.CrossRefGoogle Scholar
  43. 43.
    Carrasco, E., del Rosal, B., Sanz-Rodríguez, F., Juarranz de la Fuente, Á., Gonzalez, P. H., Rocha, U., Kumar, K. U., Jacinto, C., Solé, J. G., & Jaque, D. (2015). Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Advanced Functional Materials, 25, 615.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Materials ScienceUniversity of Milano-BicoccaMilanItaly

Personalised recommendations