Localization of Yb3+, Er3+ and Co2+ Dopants in an Optical Glass Ceramics of MgAl2O4 Spinel Nano-crystals Embedded in SiO2 Glass

  • G. Boulon
  • Y. Guyot
  • G. Alombert-Goget
  • M. Guzik
  • T. Epicier
  • L. Chen
  • L. Hu
  • W. Chen
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The main goal of this research is the localization of Yb3+ and Er3+ rare earth ions and Co2+ transition metal ion as dopants in a glass ceramics composed of MgAl2O4 spinel nano-crystals of 10–20 nm size embedded in SiO2 glass. This is the first step of a compact self-Q-switched microchip laser. We conjugate, that is rather rare, both TEM-EDX and optical spectroscopy techniques. The use of TEM-EDX technique associated with both the elemental mapping of each dopant and the direct visualization of the heavier rare earth ions is unique way in luminescent materials which has led to the result that Er3+ and Yb3+ rare earth ions are preferentially located in the spinel nano-crystals. Regarding the Co2+ low concentration, this technique was not enough accurate and finally absorption spectroscopy technique have probed the main presence of Co2+ ions in the spinel nano-crystals. The use of site selective spectroscopy technique applied to Yb3+ structural probes allows to identify the 0-phonon broad line at 975 nm with both that of the disordered glass and that of the spinel inverted phases. A new Yb3+ radiationless center has been pointed out by the presence of a strong absorption line at 970 nm which has been assigned to the strongly perturbed area of the spinel nano-crystallite surface. This dopant characterization worthwhile to be shown in this School by applying both TEM-EDX and optical spectroscopy techniques as a pedagogical case in the research of rare earth ions and transition metal ions localization.


Glass Ceramic Saturable Absorber Glassy Phase Microchip Laser Glass Ceramic Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the CLYM (Centre Lyonnais de Microscopie, for its guidance in the Ly-EtTEM (Lyon Environmental tomographic TEM) project, which was financially supported by the CNRS, The Région Rhône-Alpes, The ‘Greater Lyon’ and the French Ministry of Research and Higher Education. We wish to warmly thank the Faculty of Chemistry of the University of Wroclaw for the access of low temperature absorption measurements.


  1. 1.
    Maiman, T. (1960). Stimulated optical radiation in ruby. Nature, 187, 493.ADSCrossRefGoogle Scholar
  2. 2.
    Geusic, J. E., et al. (1964). Yttrium gallium and gadolinium garnets. Applied Physics Letters, 4(10), 182.ADSCrossRefGoogle Scholar
  3. 3.
    Boulon, G. (2012). 50 years of advances in solid-state laser materials. Optical Materials, 34(3), 499–512.ADSCrossRefGoogle Scholar
  4. 4.
    Pappalardo, R. G. (1987). Recent trends in laser material research. In: B. Di Bartolo, & E. Majorana (Eds.), Spectroscopy of solid-state laser-type materials, international science series, physical sciences (Vol. 30). New York: Plenum Press.Google Scholar
  5. 5.
    Ikesue, A., Furusato, I., & Kamata, K. (1995). Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method. Journal of the American Ceramic Society, 78, 225–228.CrossRefGoogle Scholar
  6. 6.
    Ikesue, A., Kinoshita, T., Kamata, K., & Yoshida, K. (1995). Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. Journal of the American Ceramic Society, 78, 1033–1040.CrossRefGoogle Scholar
  7. 7.
    Ikesue, A., Aung, Y. L., Yoda, T., Nakayama, S., & Kamimura, T. (2007). Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing. Optical Materials, 29(10), 1289–1294.ADSCrossRefGoogle Scholar
  8. 8.
    Lu, J., Yagi, H., Takaichi, K., Uematsu, T., Bisson, J.-F., Feng, Y., Shirakawa, A., Ueda, K.-I., Yanagitani, T., & Kaminskii, A. A. (2004). 110 W ceramic Nd3+: Y3Al5O12 laser. Applied Physics B, 79, 25.Google Scholar
  9. 9.
    Yagi, H., Yanagitani, T., Takaichi, K., Ueda, K.-i., & Kaminskii, A. A. (2007). Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics. Optical Materials, 29(10), 1258–1262.ADSCrossRefGoogle Scholar
  10. 10.
    Kaminskii, A. A., Strek, W., Hreniak, D. (Eds.). (2007). Proceedings of the 1st international laser ceramic symposium – E-MRS fall meeting 2005, 1st international laser ceramic symposium, Warsaw, Poland, 05–06 September 2005. Optical Materials, 29(10), 1217–1294.Google Scholar
  11. 11.
    Sanghera, J., Kim, W., Villalobos, G., Shaw, B., Baker, C., Frantz, J., Sadowski, B., & Aggarwal, I. (2013). Ceramic laser materials: Past and present. Optical Materials, 35(4), 693–6991.ADSCrossRefGoogle Scholar
  12. 12.
    Ramirez, M. O., Wisdom, J., Li, H., Aung, Y. L., Stitt, J., Messing, G. L., Dierolf, V., Liu, Z., Ikesue, A., Byer, R. L., & Gopalan, V. (2008). Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials. Optics Express, 16(9), 5965.ADSCrossRefGoogle Scholar
  13. 13.
    Zhao, W., Mancini, C., Amans, D., Boulon, G., Epicier, T., Min, Y., Yagi, H., Yanagitani, T., Yanagida, T., & Yoshikawa, A. (2010). Evidence of the inhomogeneous Ce3+ distribution across grain boundaries in transparent polycrystalline Ce3+-doped (Gd,Y)3Al5O12 garnet optical ceramics. Japanese Journal of Applied Physics, 49, 022602. 525, doi: 10.1143/JJAP.49.022602.
  14. 14.
    Zhao, W., Anghel, S., Mancini, C., Amans, D., Boulon, G., Epicier, T., Shi, Y., Feng, X. Q., Pan, Y. B., Chani, V., & Yoshikawa, A. (2011). Ce3+ dopant segregation in Y3Al5O12 optical ceramics. Optical Materials, 33, 684–687.ADSCrossRefGoogle Scholar
  15. 15.
    Esposito, L., Hostasa, J., Piancastelli, A., Toci G., Pirri, A., Vannini, M., Epicier, T., Malchére, A., Alombert-Goget, G., & Boulon, G. (2014). Fabrication and laser performance of multilayered YAG-Yb3+:YAG ceramics. Journal of Materials Chemistry C, 2, 10138–10148.Google Scholar
  16. 16.
    Epicier, T., Boulon, G., Zhao, W., Guzik, M., Jiang, B., Ikesue, A., & Esposito, L. (2012). Spatial distribution of the Yb3+ rare earth ions in Y3Al5O12 and Y2O3 optical ceramics as analyzed by TEM. Journal of Materials Chemistry, 22, 18221–18229.Google Scholar
  17. 17.
    Chani, V. I., Boulon, G., Zhao, W., Yanagida, T., & Yoshikawa, A. (2010). Correlation between segregation of rare earth dopants in melt crystal growth and ceramic processing for optical applications. Japanese Journal of Applied Physics, 49, 0756011–0756016.CrossRefGoogle Scholar
  18. 18.
    Duan, X. L., Yuan, D. R., Cheng, X. F., Wang, Z. M., Sun, Z. H., Luan, C. N., Xu, D., & Lv, M. K. (2004). Absorption and photoluminescence characteristics of Co2+:MgAl2O4 nanocrystals embedded in sol–gel derived SiO2-based glass. Optical Materials, 25(1), 65.ADSCrossRefGoogle Scholar
  19. 19.
    Chen, L., Yu, C., Hu, L., & Chen, W. (2012). Preparation and spectroscopic properties of nanostructured glass-ceramics containing Yb3+, Er3+ ions and Co2+-doped spinel nanocrystals. Solid State Sciences, 14, 287.ADSCrossRefGoogle Scholar
  20. 20.
    Kalisky, Y., Kalisky, O., & Kokta, M. R. (2008). Passively Q-switched diode-pumped Nd: YAG and Nd:YVO4 using (Cr4+, Ca2+):YAG and (Cr4+, Mg2+):YAG saturable absorbers. Optical Materials, 30, 1775.ADSCrossRefGoogle Scholar
  21. 21.
    Kalisky, Y., Ben Amar-Baranga, A., Shimony, Y., & Kokta, M. R. (1997). Cr4+ doped garnets: Novel laser materials and non-linear saturable absorbers. Optical Materials, 8, 129.ADSCrossRefGoogle Scholar
  22. 22.
    Kalisky, Y., Ben-Amar Baranga, A., Shimony, Y., Burshtein, Z., Pollack, S. A., & Kokta, M. (1996). Cr4+ doped garnets: Their properties as non-linear absorbers. Optical Materials, 6, 275.ADSCrossRefGoogle Scholar
  23. 23.
    Kalisky, Y. (2004). Passively Q-switched diode-pumped Nd:YAG and Nd:YVO 4 using (Cr4+, Ca2+):YAG and (Cr4+, Mg2+):YAG saturable absorbers. In R. Scheps, & T. Landsberg (Eds.), Progress in quantum electronics (Vol. 28, p. 552).Google Scholar
  24. 24.
    Chen, W., & Boulon, G. (2003). Growth mechanism of Cr: Forsterite laser crystal with high Cr concentration. Optical Materials, 24(1/2), 163–168.ADSCrossRefGoogle Scholar
  25. 25.
    Stultz, R. D., Camargo, M. B., Birnbaum, M. (1995). Divalent uranium and cobalt saturable absorber Q-Switches at 1.5 μm, OSA, Processing of Advanced Solid-State Lasers, 24, 460.Google Scholar
  26. 26.
    Yumashev, K. V., Denisov, L. A., Posonov, N. N., Kuleshov, N. V., & Moncorge, R. (2002). Excited state absorption and passive Q-switch performance of Co2+ doped oxide crystals. Journal of Alloys and Compounds, 341, 366.CrossRefGoogle Scholar
  27. 27.
    Li, P., Li, Y., Sun, Y., Hou, X., Zhang, H., & Wang, J. (2006). Passively Q-switched 1.34 μm Nd: YxGd1-xVO4 laser with Co2+:LaMgAl11O19 saturable absorber. Optics Express, 14(17), 7730.Google Scholar
  28. 28.
    Boulon, G., Guyot, Y., Alombert-Goget, G., Guzik, M., Epicier, T., Blanchard, N., Chen, L., Hu, L., & Chen, W. (2014). Conjugation of TEM-EDX and optical spectroscopy tools for the localization of Yb3+, Er3+ and Co2+ dopants in a laser glass ceramics composed of MgAl2O4 spinel nano-crystals embedded in SiO2 glass. Journal of Materials Chemistry C, 2, 9385–9397.CrossRefGoogle Scholar
  29. 29.
    Boulon, G., Guyot, Y., Guzik, M., Epicier, T., Gluchowski, P., Hreniak, D., & Strek, W. (2014). Yb3+ ions distribution in YAG nano-ceramics analyzed by both optical and TEM-EDX techniques. Journal of Physical Chemistry C, 118(28), 15474–15486.CrossRefGoogle Scholar
  30. 30.
    Guyot, Y., Steimacher, A., Belançon, M. P., Medina, A. N., Baesso, L., Lima, S., Andrade, L. H. C., Brenier, A., Jurdyc, A. M., & Boulon, G. (2011). Spectroscopic properties, concentration quenching and laser investigations of Yb3+-doped calcium aluminosilicate glasses. JOSA B, 28(10), 2510–2517.ADSCrossRefGoogle Scholar
  31. 31.
    Wiglusz, R. J., Boulon, G., Guyot, Y., Guzik, M., Hreniak, D., & Strek, W. (2014). Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nano-crystalline spinel. Dalton Transactions, 43, 7752–7759.CrossRefGoogle Scholar
  32. 32.
    Singh, V., Kumar Rai, V., Watanabe, S., Gundu Rao, T. K., Badie, L., Ledoux-Rak, I., & Jho, Y.-D. (2012). Synthesis, Characterization, Optical absorption, luminescence and defect centres in Er and Yb co-doped MgAl2O4 phosphor. Applied Physics B, 108, 437.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • G. Boulon
    • 1
  • Y. Guyot
    • 1
  • G. Alombert-Goget
    • 1
  • M. Guzik
    • 2
  • T. Epicier
    • 3
  • L. Chen
    • 4
  • L. Hu
    • 4
  • W. Chen
    • 4
  1. 1.Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière MatièreVilleurbanneFrance
  2. 2.Faculty of ChemistryUniversity of WrocławWrocławPoland
  3. 3.MATEIS, UMR 5510 CNRS, INSA of LyonUniversity of LyonVilleurbanneFrance
  4. 4.High Power Laser Components R&D Center, Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghai 201800China

Personalised recommendations