Advertisement

Molecular Targeted Anticancer Drugs

  • Kyu-Won Kim
  • Jae Kyung Roh
  • Hee-Jun Wee
  • Chan Kim
Chapter

Abstract

From the middle of the 1960s, combination chemotherapy was at the center of chemotherapy for cancer. Following successful treatment of various hematologic malignancies through combination chemotherapy, significant effort was aimed at utilizing such treatments in patients with solid cancers. Research into solid cancer treatment using combination chemotherapy was a core component of anticancer research programs from 1970s, but in spite of long-term, large-scale clinical trials, revolutionary results did not emerge, and the progression of anticancer chemotherapy has gradually slowed since 1980. Ultimately, in 2003, it was determined that mega-dose combination chemotherapy combined with bone marrow transplant was not superior than conventional combination chemotherapy in advanced breast cancer, and it was widely believed that cytotoxic chemotherapy had reached its limit as a treatment for solid cancer. The failure of mega-dose cytotoxic chemotherapy as a treatment for solid cancers showed researchers that a deep biological understanding of the complexity and diversity of individual types of cancer was essential for more effective cancer treatment.

Keywords

Epidermal Growth Factor Receptor Chronic Myeloid Leukemia Acute Promyelocytic Leukemia HDAC Inhibitor Epidermal Growth Factor Receptor Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rowley JD, Golomb HM, Dougherty C (1977) 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 309:549–550CrossRefGoogle Scholar
  2. 2.
    Borrow J, Goddard AD, Sheer D, Solomon E (1990) Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249:1577–1580PubMedCrossRefGoogle Scholar
  3. 3.
    de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347:558–561PubMedCrossRefGoogle Scholar
  4. 4.
    Friend C, Scher W, Holland JG, Sato T (1971) Hemoglobin synthesis in murine virusinduced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A 68:378–382PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Breitman TR, Collins SJ, Keene BR (1981) Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood 57:1000–1004PubMedGoogle Scholar
  6. 6.
    Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu LJ, Wang ZY (1988) Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572PubMedGoogle Scholar
  7. 7.
    Warrell RP Jr, Frankel SR, Miller WH Jr, Scheinberg DA, Itri LM et al (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 324:1385–1393PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu J, Gianni M, Kopf E, Honoré N, Chelbi-Alix M, Koken M, Quignon F, Rochette-Egly C, de Thé H (1999) Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci 96:14807–14812PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497–1501Google Scholar
  10. 10.
    Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293PubMedCrossRefGoogle Scholar
  11. 11.
    de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A et al (1982) A cellular oncogene is translocated to the philadelphia chromosome in chronic myelocitic leukemia. Nature 300:765–767PubMedCrossRefGoogle Scholar
  12. 12.
    Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G (1985) Structural organization of the Bcr gene and its role in the Ph’ translocation. Nature 315:758–761PubMedCrossRefGoogle Scholar
  13. 13.
    Witte ON, Dasgupta A, Baltimore D (1980) Abelson murine leukemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature 283:826–831PubMedCrossRefGoogle Scholar
  14. 14.
    Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D (1986) The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233:212–214PubMedCrossRefGoogle Scholar
  15. 15.
    Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247:824–830PubMedCrossRefGoogle Scholar
  16. 16.
    Zimmermann J, Caravatti G, Mett H, Meyer T, Miiller M, Fabbro D (1996) Phenylamino-pyrimidine (PAP) derivatives: a new class of potent and selective inhibitors of protein kinase C (PKC). Arch Pharm 329:371–376CrossRefGoogle Scholar
  17. 17.
    Buchdunger E, Zimmermann J, Mett H, Meyer T, Miiller M, Druker BJ, Lydon NB (1996) Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 56:100–104PubMedGoogle Scholar
  18. 18.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the ABL tyrosine kinase on the growth of BCR-ABL positive cells. Nat Med 2:561–566PubMedCrossRefGoogle Scholar
  19. 19.
    Druker BJ, Talpaz M, Resta D et al (2001) Efficacy and safety of a specific inhibitor of the Bcr-Abl tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037PubMedCrossRefGoogle Scholar
  20. 20.
    Kantarjian H, Sawyer C, Hochhaus A, Guilhot F, Schiffer C et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346:645–652PubMedCrossRefGoogle Scholar
  21. 21.
    Gleich GJ, Leiferman KM, Pardanani A et al (2002) Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet 359:1577–1578PubMedCrossRefGoogle Scholar
  22. 22.
    Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480PubMedCrossRefGoogle Scholar
  23. 23.
    Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by Bcr-Abl gene mutation or amplification. Science 293:876–880PubMedCrossRefGoogle Scholar
  24. 24.
    Wityak J, Das J, Moquin RV, Shen Z, Lin J, Chen P, Doweyko AM et al (2003) Discovery and initial SAR of 2-amino-5-carboxamidothiazoles as inhibitors of the Src-family kinsae p56lck. Bioorg Med Chem Lett 13:4007–4010PubMedCrossRefGoogle Scholar
  25. 25.
    Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S et al (2004) Discovery of N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent anti-tumor activity in preclinical assays. J Med Chem 47:6658–6661PubMedCrossRefGoogle Scholar
  26. 26.
    Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305:399–401PubMedCrossRefGoogle Scholar
  27. 27.
    Tokarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE et al (2006) The structure of dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 66:5790–5797PubMedCrossRefGoogle Scholar
  28. 28.
    Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 354:2531–3541PubMedCrossRefGoogle Scholar
  29. 29.
    Schindler T, Bornmann W, Pellicena P, Miller TW, Clarkson B, Kuriyan J (2000) Structural mechanism of STI-571 inhibition of abelson tyrosine kinase. Science 289:1938–1942PubMedCrossRefGoogle Scholar
  30. 30.
    Weisberg E, Manley PW, Breitenstein W et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141PubMedCrossRefGoogle Scholar
  31. 31.
    Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354:2542–2551PubMedCrossRefGoogle Scholar
  32. 32.
    Boschelli DH, Ye F, Wang YD, Dutia M, Johnson SL, Wu B, Miller K et al (2001) Optimization of 4-phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. J Med Chem 44:3965–3977PubMedCrossRefGoogle Scholar
  33. 33.
    Golas JM, Arndt K, Etienne D et al (2003) SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res 3:375–381Google Scholar
  34. 34.
    Puttini M, Coluccia AM, Boschelli F et al (2006) In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib resistant Bcr-Abl + neoplastic cells. Cancer Res 66:11314–11322PubMedCrossRefGoogle Scholar
  35. 35.
    Cortes JE, Kantarjian HM, Brümmendorf TH, Kim DW, Turkina AG et al (2011) Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood 118:4567–4576PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cohen S (1960) Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antiserum. Proc Natl Acad Sci 46:302–311PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562PubMedGoogle Scholar
  38. 38.
    Cohen S, Elliot GA (1963) The stimulations of epidermal keratinization by a protein isolated from the submaxillary gland of the mouse. J Invest Dermatol 40:1–5PubMedCrossRefGoogle Scholar
  39. 39.
    Starkey RH, Cohen S, Orth DN (1975) Epidermal growth factor: identification of a new hormone in human urine. Science 89:800–802CrossRefGoogle Scholar
  40. 40.
    Cohen S, Ushiro H, Stoscheck CM, Chinkers M (1982) A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem 257:1523–1531PubMedGoogle Scholar
  41. 41.
    Ushiro H, Cohen S (1980) Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem 255:8363–8365PubMedGoogle Scholar
  42. 42.
    Hunter T, Cooper JA (1981) Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells. Cell 24:741–752PubMedCrossRefGoogle Scholar
  43. 43.
    Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–527PubMedCrossRefGoogle Scholar
  44. 44.
    Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J et al (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–425PubMedCrossRefGoogle Scholar
  45. 45.
    Hong WK, Ullrich A (2000) The role of EGFR in solid tumors and implications for therapy. Oncol Biother 1:1–29Google Scholar
  46. 46.
    Barker AJ, Davies DH (1992) Therapeutic preparations containing quinazoline derivatives. European Patent, EP-520722-AGoogle Scholar
  47. 47.
    Wakeling AE, Barker AJ, Davies DH et al (1996) Specific inhibition of epidermal growth factor receptor tyrosine kinase by 4-anilinoquinazolines. Breast Cancer Res Treat 38:67–73PubMedCrossRefGoogle Scholar
  48. 48.
    Woodburn JR, Barker AJ, Gibson KH et al (1997) ZD1839, an epidermal growth factor tyrosine kinase inhibitor selected for clinical development. Proc Am Assoc Cancer Res 38:633–634Google Scholar
  49. 49.
    Kris MG, Natale RB, Herbst RS et al (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with nonsmall cell lung cancer: a randomized trial. JAMA 290:2149–2158PubMedCrossRefGoogle Scholar
  50. 50.
    Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of nonsmall-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139PubMedCrossRefGoogle Scholar
  51. 51.
    Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500PubMedCrossRefGoogle Scholar
  52. 52.
    Mok TS, Wu Y-L, Thongprasert S et al (2009) Gefitinib or carboplatin—paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957PubMedCrossRefGoogle Scholar
  53. 53.
    Arnold LD, Schnur RC (1996) Novel anti-proliferative quinazoline derivatives useful for treating tumours, inflammatory disorders etc. World Patent Application W09630347Google Scholar
  54. 54.
    Moyer JD, Barbacci EG, Iwata KK, Arnold L, Boman B, Cunningham A et al (1997) Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 57:4838–4848PubMedGoogle Scholar
  55. 55.
    Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132PubMedCrossRefGoogle Scholar
  56. 56.
    Zhou C, Wu Y-L, Chen G et al (2011) Erlotinib versus chemotherapy as first line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG- 0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12:735–742PubMedCrossRefGoogle Scholar
  57. 57.
    Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutationpositive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246PubMedCrossRefGoogle Scholar
  58. 58.
    Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966PubMedCrossRefGoogle Scholar
  59. 59.
    Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kobayashi S, Boggon TJ, Dayaram T et al (2005) EGFR mutation and resistance of nonsmall-cell lung cancer to gefitinib. N Engl J Med 352:786–792PubMedCrossRefGoogle Scholar
  61. 61.
    Kobayashi S, Ji H, Yuza Y, Meyerson M, Wong KK, Tenen DG, Halmos B (2005) An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res 65:7096–7101PubMedCrossRefGoogle Scholar
  62. 62.
    Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW et al (2005) Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci 102:7665–7670PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR et al (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27:4702–4711PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Passaro A, Gori B, de Marinis F (2013) Afatinib as first-line treatment for patients with advanced non-small-cell lung cancer harboring EGFR mutations: focus on LUX-Lung 3 and LUX-Lung 6 phase III trials. J Thorac Dis 5:383–384PubMedPubMedCentralGoogle Scholar
  65. 65.
    Miller VA, Hirsh V, Cadranel J et al (2012) Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol 13:528–538PubMedCrossRefGoogle Scholar
  66. 66.
    Lin NU, Winer EP, Wheatley D, Carey LA, Houston S, Mendelson D et al (2012) A phase II study of afatinib (BIBW 2992), an irreversible ErbB family blocker, in patients with HER2-positive metastatic breast cancer progressing after trastuzumab. Breast Cancer Res Treat 133:1057–1065PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kawamoto T, Sato JD, Le A, Polikoff J, Sato GH, Mendelsohn J (1983) Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci 80:1337–1341PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Masui H, Kawamoto T, Sato JD, Wolf B, Sato G, Mendelsohn J (1984) Growth inhibition of human tumor cells in athymic mice by anti-EGF receptor monoclonal antibodies. Cancer Res 44:1002–1007PubMedGoogle Scholar
  69. 69.
    Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1:1311–1318PubMedGoogle Scholar
  70. 70.
    Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345PubMedCrossRefGoogle Scholar
  71. 71.
    Yang XD, Jia XC, Corvalan JR, Wang P, Davis CG, Jakobovits A (1999) Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res 59:1236–1243PubMedGoogle Scholar
  72. 72.
    Mendez MJ, Green LL, Corvalan JR, Jia XC, Maynard-Currie CE, Yang XD et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 115:146–156CrossRefGoogle Scholar
  73. 73.
    Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B et al (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25:1658–1664PubMedCrossRefGoogle Scholar
  74. 74.
    Padhy LC, Shih C, Cowing D, Finkelstein R, Weinberg RA (1982) Identification of a phosphoprotein specifically induced by the transforming DNA of rat neuroblastomas. Cell 28:865–871PubMedCrossRefGoogle Scholar
  75. 75.
    Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J et al (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230:1132–1139PubMedCrossRefGoogle Scholar
  76. 76.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182PubMedCrossRefGoogle Scholar
  77. 77.
    Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712PubMedCrossRefGoogle Scholar
  78. 78.
    Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A (1989) p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9:1165–1172PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL et al (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci 89:4285–4289PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Slamon D, Leyland-Jones B, Shak S, Paton V, Bajamonde A, Fleming T, Eiermann W, Baselga J, Norton L et al (1998) Proc Annu Meet Am Soc Clin Oncol 17:98a; Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792Google Scholar
  81. 81.
    Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastroesophageal junction cancer (ToGA): a phase 3, openlabel, randomised controlled trial. Lancet 376:687–697PubMedCrossRefGoogle Scholar
  82. 82.
    Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17:2639–2648PubMedGoogle Scholar
  83. 83.
    Agus DB, Akita RW, Fox WD et al (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2:127–137PubMedCrossRefGoogle Scholar
  84. 84.
    Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ (2003) Structure of the extracellularregion of HER2 alone and in complex with the Herceptin Fab. Nature 421:756–760PubMedCrossRefGoogle Scholar
  85. 85.
    Fendly BM, Winget M, Hudziak RM et al (1990) Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res 50:1550–1558PubMedGoogle Scholar
  86. 86.
    Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX (2004) Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5:317–328PubMedCrossRefGoogle Scholar
  87. 87.
    Scheuer W, Friess T, Burtscher H et al (2009) Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 69:9330–9336PubMedCrossRefGoogle Scholar
  88. 88.
    Baselga J, Cortes J, Kim SB et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366:109–119PubMedCrossRefGoogle Scholar
  89. 89.
    Carter MC, Cockerill GS, Guntrip SB, Lackey KE, Smith KJ (1999) Bicyclic heteroaromatic compounds [quinazolinamines and analogs] useful as protein tyrosine kinase inhibitors. PCT Int Appl WO9935146Google Scholar
  90. 90.
    Cockerill S, Stubberfield C, Stables J, Carter M, Guntrip S, Smith K, McKeown S, Shaw R, Topley P, Thomsen L (2001) Indazolylamino quinazolines and pyridopyrimidines as inhibitors of the EGFr and C-erbB-2. Bioorg Med Chem Lett 11:1401–1405PubMedCrossRefGoogle Scholar
  91. 91.
    Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N et al (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1:85–94PubMedGoogle Scholar
  92. 92.
    Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M et al (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66:1630–1639PubMedCrossRefGoogle Scholar
  93. 93.
    Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743PubMedCrossRefGoogle Scholar
  94. 94.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  95. 95.
    Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858PubMedCrossRefGoogle Scholar
  96. 96.
    Gospodarowicz D, Abraham JA, Schilling J (1989) Isolation and characterization of a vascular endothelial mitogen produced by pituitary-derived folliculo stellate cells. Proc Natl Acad Sci 86:7311–7315PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991PubMedCrossRefGoogle Scholar
  98. 98.
    Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC et al (1992) Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 187:1579–1586PubMedCrossRefGoogle Scholar
  99. 99.
    Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Møller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846PubMedCrossRefGoogle Scholar
  100. 100.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844PubMedCrossRefGoogle Scholar
  101. 101.
    Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Ferrara N (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599PubMedGoogle Scholar
  102. 102.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMedCrossRefGoogle Scholar
  103. 103.
    Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Rudge JS et al (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 99:11393–11398PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, Allegra C (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30:3499–3506PubMedCrossRefGoogle Scholar
  105. 105.
    Mohammadi M, McMahon G, Sun L, Tang C, Hirth P, Yeh BK, Hubbard SR, Schlessinger J (1997) Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276:955–960PubMedCrossRefGoogle Scholar
  106. 106.
    Millaurer B, Shawver LK, Plate KH, Risau W, Ullrich A (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367:576–579CrossRefGoogle Scholar
  107. 107.
    Sun L, Tran N, Tang F, App H, Hirth P, McMahon G, Tang C (1998) Synthesis and biological evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity toward particular receptor tyrosine kinases. J Med Chem 41:2588–2603PubMedCrossRefGoogle Scholar
  108. 108.
    Sun L, Liang C, Shirazian S, Zhou Y, Miller T, Cui J, Fukuda JY et al (2003) Discovery of 5-[5-fluoro-2-oxo-1,2-dihydroindol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J Med Chem 46:1116–1119PubMedCrossRefGoogle Scholar
  109. 109.
    Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE et al (2003) In vivo anti – tumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet – derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337PubMedGoogle Scholar
  110. 110.
    Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:15–24CrossRefGoogle Scholar
  111. 111.
    Demetri GD, van Oosterom AT, Garrett CR et al (2006) Efficacy and safety of sunitinib in patients with advanced gastorointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368:329–338CrossRefGoogle Scholar
  112. 112.
    Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C et al (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364:501–513PubMedCrossRefGoogle Scholar
  113. 113.
    Smith RA, Barbosa J, Blum CL, Bobko MA, Caringal YV, Dally R et al (2001) Discovery of heterocyclic ureas as a new class of raf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach. Bioorg Med Chem Lett 11:2775–2778PubMedCrossRefGoogle Scholar
  114. 114.
    Wilhelm S et al (2001) BAY 43–9006, a novel Raf-1 kinase inhibitor (RKI) blocks the Raf/MEK/ERK pathway in tumor cells. Proc Am Assoc Cancer Res 42:923Google Scholar
  115. 115.
    Lowinger TB, Riedl B, Dumas J, Smith RA (2002) Design and discovery of small molecules targeting raf-1 kinase. Curr Pharm Des 8:2269–2278PubMedCrossRefGoogle Scholar
  116. 116.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Trail PA et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109PubMedCrossRefGoogle Scholar
  117. 117.
    Chang YS, Henderson A, Xue D, Chen C, McNabola A, Wilkie D et al (2005) BAY 43-9006 (Sorafenib) inhibits ectopic and orthotopic growth of a murine model of renal adenocarcinoma (Renca) predominantly through inhibition of tumor angiogenesis. Proc Am Assoc Cancer Res 46:5831Google Scholar
  118. 118.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Bukowski RM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134PubMedCrossRefGoogle Scholar
  119. 119.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, Bruix J et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390PubMedCrossRefGoogle Scholar
  120. 120.
    Bayer Pharmaceutical Corporation (2005) Fluoro substituted omega- carboxylaryl diphenyl urea for the treatment and prevention of diseases and conditions. US Patent, US2004023500Google Scholar
  121. 121.
    Wilhelm SM, Dumas J, Adnane L et al (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129:245–255PubMedCrossRefGoogle Scholar
  122. 122.
    Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:303–312PubMedCrossRefGoogle Scholar
  123. 123.
    Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H et al (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:295–302PubMedCrossRefGoogle Scholar
  124. 124.
    Harris PA, Boloor A, Cheung M, Kumar R, Crosby RM, Davis-Ward RG et al (2008) Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methylbenzenesulfonamide (pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J Med Chem 51:4632–4640. Boloor A et al (2006) Pyrimidineamines as angiogenesis modulators. U.S. Patent, 7105530Google Scholar
  125. 125.
    Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC et al (2007) Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6:2012–2021PubMedCrossRefGoogle Scholar
  126. 126.
    Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J et al (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28:1061–1068PubMedCrossRefGoogle Scholar
  127. 127.
    van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B et al (2012) Pazopanib for metastatic soft-tissue sarcoma(PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379:1879–1886PubMedCrossRefGoogle Scholar
  128. 128.
    Kania RS (2003) Indazole compounds and pharmaceutical compositions for inhibiting protein kinases, and methods for their use. US Patent, US 6534524Google Scholar
  129. 129.
    Hu-Lowe DD, Zou HY, Grazzini ML et al (2008) Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res 14:7272–7283PubMedCrossRefGoogle Scholar
  130. 130.
    Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, Michaelson MD et al (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378:1931–1939PubMedCrossRefGoogle Scholar
  131. 131.
    Hennequin LF, Stokes ES, Thomas AP, Johnstone C, Plé PA, Ogilvie DJ et al (2002) Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J Med Chem 45:1300–1312PubMedCrossRefGoogle Scholar
  132. 132.
    Wedge SR, Ogilvie DJ, Dukes M et al (2002) ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62:4645–4655PubMedGoogle Scholar
  133. 133.
    Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, Pierotti MA et al (1990) PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60:557–563PubMedCrossRefGoogle Scholar
  134. 134.
    Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G et al (2002) ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 62:7284–7290PubMedGoogle Scholar
  135. 135.
    Wells SA Jr, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M et al (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30:134–141PubMedCrossRefGoogle Scholar
  136. 136.
    Bannen LC, Chan DS, Forsyth TP, Khoury RG, Leahy JW, Mac MB et al (2009) inventors; Exelixis, Inc., assignee. c-Met modulators and methods of use. U.S. patent US7579473Google Scholar
  137. 137.
    Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F et al (2011) Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 10:2298–2308PubMedCrossRefGoogle Scholar
  138. 138.
    Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R, Pfister DG et al (2011) Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol 29:2660–2666PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kralovics R, Passamonti F, Buser AS et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790PubMedCrossRefGoogle Scholar
  140. 140.
    Baxter EJ, Scott LM, Campbell PJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365:1054–1061PubMedCrossRefGoogle Scholar
  141. 141.
    James C, Ugo V, Le Couedic JP et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:1144–1148PubMedCrossRefGoogle Scholar
  142. 142.
    Lin Q, Meloni D, Pan Y, Xia M, Rodgers J, Shepard S, Li M, Galya L et al (2009) Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-Michael reaction. Org Lett 11:1999–2002PubMedCrossRefGoogle Scholar
  143. 143.
    Quintás-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA et al (2010) Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115:3109–3117PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R et al (2012) JAK Inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 366:787–798PubMedCrossRefGoogle Scholar
  145. 145.
    Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al (2012) A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 366:799–807PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Cui JJ et al (2006) Pyrazole-substituted aminoheteroaryl compounds as protein kinase inhibitors. U. S. Patent Application 20060128724; Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung PP, Pairish M, Jia L et al (2011) Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition Factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 54:6342–6363Google Scholar
  147. 147.
    Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S et al (2007) An orally available small-molecule inhibitor of c-Met, PF-02341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67:4408–4417PubMedCrossRefGoogle Scholar
  148. 148.
    Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284PubMedCrossRefGoogle Scholar
  149. 149.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566PubMedCrossRefGoogle Scholar
  150. 150.
    Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, Wang L, Soda M et al (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455:971–974PubMedCrossRefGoogle Scholar
  151. 151.
    Kim DW, Ahn MJ, Shi Y, De Pas TM, Yang CY et al (2012) Results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer. J Clin Oncol 30:suppl 7533Google Scholar
  152. 152.
    Shaw AT, Kim DW, Nakagawa K, Seto T, Crinó L, Ahn MJ, De Pas T et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368:2385–2394PubMedCrossRefGoogle Scholar
  153. 153.
    Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds FH Jr, Stephenson JR (1983) Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci 80:4218–4222PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954PubMedCrossRefGoogle Scholar
  155. 155.
    Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S et al (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci 105:3041–3046PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Laquerre S, Arnone M, Moss K, Yang J, Fisher K, Kane-Carson LS et al (2009) A selective Raf kinase inhibitor induces cell death and tumor regression of human cancer cell lines encoding B-RafV600E mutation. Mol Cancer Ther 8 suppl:B88CrossRefGoogle Scholar
  160. 160.
    Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365PubMedCrossRefGoogle Scholar
  161. 161.
    Yamaguchi T, Yoshida T, Kurachi R, Kakegawa J, Hori Y, Nanayama T et al (2007) Identification of JTP‐70902, a p15INK4b‐inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci 98:1809–1816PubMedCrossRefGoogle Scholar
  162. 162.
    Gilmartin AG, Bleam MR, Groy A, Moss KG, Minthorn EA et al (2011) GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin Cancer Res 17(5):989–1000PubMedCrossRefGoogle Scholar
  163. 163.
    Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367:107–114PubMedCrossRefGoogle Scholar
  164. 164.
    Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC et al (1993) Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 261:358–361PubMedCrossRefGoogle Scholar
  165. 165.
    Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, Burrill LC et al (2007) Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. Chem Med Chem 2:58–61PubMedCrossRefGoogle Scholar
  166. 166.
    Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B et al (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci 107:13075–13080PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, Jurczak W et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369:507–516PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369:32–42PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Vézina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28:721–726PubMedCrossRefGoogle Scholar
  170. 170.
    Martel RR, Klicius J, Galet S (1977) Inhibition of the immune response by rapamycin a new antifungal antibiotic. Can J Physiol Pharmacol 55:48–51PubMedCrossRefGoogle Scholar
  171. 171.
    Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M et al (1987) FK-506. a novel immunosuppressant isolated from a Streptomycetes. I. Fermentation, isolation, and physicochemical and biological characteristics. J Antibiot 60:1249–1255CrossRefGoogle Scholar
  172. 172.
    Dumont FJ, Melino MR, Staruch MJ, Koprak SL, Fisher PA, Signal NH (1990) The immunosupressive macrolides FK506 and rapamycin act as reciprocal antagonist in murine T cells. J Immunol 144:1418–1424PubMedGoogle Scholar
  173. 173.
    Eng CP, Sehgal SN, Vézina C (1984) Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot 37:1231–1237PubMedCrossRefGoogle Scholar
  174. 174.
    Bierer BE, Somers PK, Wandless TJ, Burakoff SJ, Schreiber SL (1990) Probing immunosuppressant action with a nonnatural immunophilin ligand. Science 250:556–559PubMedCrossRefGoogle Scholar
  175. 175.
    Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–768PubMedCrossRefGoogle Scholar
  176. 176.
    Skotnicki JS, Leone CL, Smith AL (2001) Design, synthesis, and biological evaluation of C-42 hydroxyesters of rapamycin: the identification of CCI-779. Clin Cancer Res 7:S3749–S3750Google Scholar
  177. 177.
    Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B, Czernin J, Sawyers CL (2006) Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12:122–127PubMedCrossRefGoogle Scholar
  178. 178.
    Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281PubMedCrossRefGoogle Scholar
  179. 179.
    Schuurman HJ, Cottens S, Fuchs S, Joergensen J, Meerloo T, Sedrani R et al (1997) SDZ RAD, a new rapamycin derivative: synergism with cyclosporine. Transplantation 64:32–35PubMedCrossRefGoogle Scholar
  180. 180.
    Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456PubMedCrossRefGoogle Scholar
  181. 181.
    Darcy AK, Marguerite MC, Katherine H, Karen A, Cynthia T, Prajakta M et al (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811CrossRefGoogle Scholar
  182. 182.
    James CY, Manisha HS, Tetsuhide I, Catherine LB, Edward MW, Eric VC et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364:514–523CrossRefGoogle Scholar
  183. 183.
    José B, Mario C, Martine P, Howard AB, Hope SR, Tarek S et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366:520–529CrossRefGoogle Scholar
  184. 184.
    Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Rabb R et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445PubMedGoogle Scholar
  185. 185.
    David GM, Antonio JG, Christine AW, David B, Russell JS, James AN et al (1997) IDEC-C2B8 (Rituximab) Anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90:2188–2195Google Scholar
  186. 186.
    Knox SJ, Goris ML, Trisler K et al (1996) Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res 2:457–470PubMedGoogle Scholar
  187. 187.
    Roselli M, Schlom J, Gansow OA et al (1991) Comparative biodistribution studies of DTPA-derivative bifunctional chelates for radiometal labeled monoclonal antibodies. Int J Radiat Appl Instrum B Nucl Med Biol 18:389–394CrossRefGoogle Scholar
  188. 188.
    Witzig TE, Gordon LI, Cabanillas MS et al (2002) Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory, low grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 20:2453–2463PubMedCrossRefGoogle Scholar
  189. 189.
    Kaminski MS, Fig LM, Zasadny KR et al (1992) Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. J Clin Oncol 10:1696–1711PubMedGoogle Scholar
  190. 190.
    Kaminski MS, Zelenetz AD, Press OW et al (2001) Pivotal study of Bexxar (iodine I 131 tositumomab) for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol 19:3918–3928PubMedGoogle Scholar
  191. 191.
    Hale G, Bright S, Chumbley G, Hoang T, Metcalf D, Munro AJ, Waldmann H (1983) Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood 62:873–882PubMedGoogle Scholar
  192. 192.
    Riechmann L, Clark M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332:323–327PubMedCrossRefGoogle Scholar
  193. 193.
    Crowe JS, Hall VS, Smith MA, Cooper HJ, Tite JP (1992) Humanized monoclonal antibody CAMPATH-1H: myeloma cell expression of genomic constructs, nucleotide sequence of cDNA constructs and comparison of effector mechanisms of myeloma and Chinese hamster ovary cell-derived material. Clin Exp Immunol 87:105–110PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Keating MJ, Flinn I, Jain V et al (2002) Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 99:3554–3561PubMedCrossRefGoogle Scholar
  195. 195.
    Hillmen P, Skotnicki AB, Robak T, Jaksic B, Dmoszynska A, Wu J, Sirard C, Mayer J (2007) Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol 25:5616–5623PubMedCrossRefGoogle Scholar
  196. 196.
    Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H et al (2004) Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 104:1793–1800PubMedCrossRefGoogle Scholar
  197. 197.
    Wierda WG, Kipps TJ, Mayer J, Stilgenbauer S, Williams CD et al (2010) Ofatumumab as single-agent CD20 immunotherapy in fludarabine refractory chronic lymphocytic leukemia. J Clin Oncol 28:1749–1755PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Wahl AF et al (2002) The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin’s disease. Cancer Res 62:3736–3742PubMedGoogle Scholar
  199. 199.
    Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K et al (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102:1458–1465PubMedCrossRefGoogle Scholar
  200. 200.
    Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ et al (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 30:2183–2189PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T et al (2012) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol 30:2190–2196PubMedCrossRefGoogle Scholar
  202. 202.
    Mössner E, Brunker P, Moser S et al (2010) Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 115:4393–4402PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Dalle S, Reslan L, Besseyre de Horts T et al (2011) Preclinical studies on the mechanism of action and the anti-lymphoma activity of the novel anti-CD20 antibody GA101. Mol Cancer Ther 10:178–185PubMedCrossRefGoogle Scholar
  204. 204.
    Goede V, Fischer K, Busch R, Engelke A, Eichhorst B et al (2014) Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 370:1101–1110PubMedCrossRefGoogle Scholar
  205. 205.
    Holliday R (1979) A new theory of carcinogenesis. Br J Cancer 40:513–522PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92PubMedCrossRefGoogle Scholar
  207. 207.
    Čihák A, Škoda J, Šorm F (1963) Inhibition of biosynthesis of the nucleic acid pyrimidine bases by N-formylbiuret, a degradation product of 5-azauracil. Biochim Biophys Acta 72:125–127PubMedCrossRefGoogle Scholar
  208. 208.
    Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93PubMedCrossRefGoogle Scholar
  209. 209.
    Santi DV, Garrett CE, Barr PJ (1983) On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33:9–10PubMedCrossRefGoogle Scholar
  210. 210.
    Silverman LR, Demakos EP, Peterson BL et al (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20:2429–2440PubMedCrossRefGoogle Scholar
  211. 211.
    Veselý J, Cihák A (1980) Kinetics of 5-aza-2′-deoxycytidine phosphorylation in mouse spleen and L1210 leukemic cell extracts. Neoplasma 27:121–127PubMedGoogle Scholar
  212. 212.
    Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J et al (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a Phase III randomized study. Cancer 106:1794–1803PubMedCrossRefGoogle Scholar
  213. 213.
    Daskalakis M, Nguyen TT, Nguyen C, Guldberg P, Köhler G, Wijermans P, Jones PA, Lübbert M (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2′-deoxycytidine (decitabine) treatment. Blood 100:2957–2964PubMedCrossRefGoogle Scholar
  214. 214.
    Stedman E (1950) Cell specificity of histones. Nature 166:780–781PubMedCrossRefGoogle Scholar
  215. 215.
    Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation & methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci 51:786–794PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851PubMedCrossRefGoogle Scholar
  217. 217.
    Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411PubMedCrossRefGoogle Scholar
  218. 218.
    Friend C, Scher W, Holland JG, Sato T (1971) Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci 68:378–382PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Leder A, Leder P (1975) Butyric acid, a potent inducer of erythroid differentiation in cultured erythroleukemic cells. Cell 5:319–322PubMedCrossRefGoogle Scholar
  220. 220.
    Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268:462–464PubMedCrossRefGoogle Scholar
  221. 221.
    Candido EP, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113PubMedCrossRefGoogle Scholar
  222. 222.
    Yoshida M, Nomura S, Beppu T (1987) Effects of trichostatins on differentiation of murine erythroleukemia cells. Cancer Res 47:3688–3691PubMedGoogle Scholar
  223. 223.
    Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K (1976) A new antifungal antibiotic, trichostatin. J Antibiot 29:1–6PubMedCrossRefGoogle Scholar
  224. 224.
    Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17172–17179Google Scholar
  225. 225.
    Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW, Moon EJ et al (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7:437–443PubMedCrossRefGoogle Scholar
  226. 226.
    Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268:22429–22435PubMedGoogle Scholar
  227. 227.
    Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 241:126–133PubMedCrossRefGoogle Scholar
  228. 228.
    Piekarz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH et al (2009) Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 27:5410–5417PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Tanaka M, Levy J, Terada M, Breslow R, Rifkind RA, Marks PA (1975) Induction of erythroid differentiation in murine virus infected eythroleukemia cells by highly polar compounds. Proc Natl Acad Sci 72:1003–1006PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Reuben RC, Wife RL, Breslow R, Rifkind RA, Marks PA (1976) A new group of potent inducers of differentiation in murine erythroleukemia cells. Proc Natl Acad Sci 73:862–866PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Richon VM, Webb Y, Merger R, Sheppard T, Jursic B, Ngo L et al (1996) Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc Natl Acad Sci 93:5705–5708PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci 95:3003–3007PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C et al (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109:31–39PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771PubMedCrossRefGoogle Scholar
  235. 235.
    Adams J et al (1995) Boronic ester and acid compounds. US Patent 5780554Google Scholar
  236. 236.
    Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J (1999) The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 5:2638–2645PubMedGoogle Scholar
  237. 237.
    Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076PubMedGoogle Scholar
  238. 238.
    Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S et al (2003) A Phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617PubMedCrossRefGoogle Scholar
  239. 239.
    Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci 96:10403–10408PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM et al (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110:3281–3290PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S, Trudel S et al (2012) A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 120:2817–2825PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Lee ST, Welch KD, Panter KE, Gardner DR, Garrossian M, Chang CW (2014) Cyclopamine: from cyclops lambs to cancer treatment. J Agri Food Chem 62:7355–7362CrossRefGoogle Scholar
  243. 243.
    Binns W, James LF, Keeler RF, Balls LD (1968) Effects of teratogenic agents in range plants. Cancer Res 28:2323–2326PubMedGoogle Scholar
  244. 244.
    Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413PubMedCrossRefGoogle Scholar
  245. 245.
    Johnson RL, Rothman AL, Xie J, Goodrich LV, Cox DR, Epstein EH Jr, Scott MP (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671PubMedCrossRefGoogle Scholar
  246. 246.
    Xie J, Murone M, Luoh SM, Ryan A, Rosenthal A, Epstein EH Jr, de Sauvage FJ (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391:90–92PubMedCrossRefGoogle Scholar
  247. 247.
    Cooper MK, Porter JA, Young KE, Beachy PA (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280:1603–1607PubMedCrossRefGoogle Scholar
  248. 248.
    Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Scott MP, Beachy PA (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406:1005–1009PubMedCrossRefGoogle Scholar
  249. 249.
    Robarge KD, Brunton SA, Sutherlin DP, Ubhayaker S, Wang S, Wong S, Xie M et al (2009) GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 19:5576–5581PubMedCrossRefGoogle Scholar
  250. 250.
    Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, Solomon JA et al (2012) Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 366:2171–2179PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Kyu-Won Kim
    • 1
  • Jae Kyung Roh
    • 2
  • Hee-Jun Wee
    • 1
  • Chan Kim
    • 3
  1. 1.College of PharmacySeoul National UniversitySeoulKorea (Republic of)
  2. 2.Department of Internal MedicineYonsei University College of MedicineSeoulKorea (Republic of)
  3. 3.Department of Internal MedicineCHA Bundang Medical CenterSeongnamKorea (Republic of)

Personalised recommendations