Advertisement

General Considerations

  • Hui Li
  • Diego Avella Patino
  • Mark K. FergusonEmail author
  • Jianfeng Li
  • Xiao Li
  • Inderpal S. Sarkaria
  • James D. Luketich
  • Yi Feng
  • Juan Zhu
Chapter

Abstract

Esophageal cancer is the eighth most common cancer and the sixth most common cause of cancer-related death in the world, with an estimated 482,300 new cases and 406,800 cancer deaths in 2008 worldwide [1]. Survival is poor, with a high mortality-to-incidence rate ratio of 0.84.As per the data of the American Joint Committee on Cancer, the postoperative 5-year survival rate of stage I esophageal cancer is about 90%, and decreases to 45% for stage II, 20% for stage III, and only 10% for stage IV patients [2].

Keywords

Esophageal Cancer Induction Therapy Minimally Invasive Esophagectomy Staple Anastomosis Left Lateral Decubitus Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Video 1

Indocyanine Green Near Infrared Fluorescence Imaging may be useful in highlighting vital vasculature (shown in figure) or assessing gastric and conduit perfusion (AVI 58 bytes)

Video 2

Creation of gastric conduit during Robotic Assisted Minimally Invasive Esophagectomy (AVI 58 bytes)

Video 3

Transhiatal traverse of gastric conduit in proper orientation during RAMIE. Only the most proximal portion of the conduit is directly handled (AVI 58 bytes)

Video 4

Subcarinal lymph node dissection during RAMIE (AVI 58 bytes)

References

  1. 1.
    Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Ando N, Ozawa S, Kitagawa Y, Shinozawa Y, Kitajima M. Improvement in the results of surgical treatment of advanced squamous esophageal carcinoma during 15 consecutive years. Ann Surg. 2000;232:225–32.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kelsen DP, Ginsberg R, Pajak TF, et al. Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med. 1998;339(27):1979–84.PubMedCrossRefGoogle Scholar
  4. 4.
    Cuschieri A, Shimi S, Banting S. Endoscopic oesophagectomy through a right thoracoscopic approach. J R Coll Surg Edinb. 1992;37:7–11.PubMedGoogle Scholar
  5. 5.
    Lazzarino AI, Nagpal K, Bottle A, Faiz O, Moorthy K, Aylin P. Open versus minimally invasive esophagectomy: trends of utilization and associated outcomes in England. Ann Surg. 2010;252:292–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamamoto S, Kawahara K, Maekawa T, et al. Minimally invasive esophagectomy for stage I and II esophageal cancer. Ann Thorac Surg. 2005;80(6):2070–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Smithers BM, Gotley DC, McEwan D, et al. Thoracoscopic mobilization of the esophagus: a 6 year experience. Surg Endosc. 2001;15(2):176–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Luketich JD, Alvelo-Rivera M, Buenaventura PO, et al. Minimally invasive esophagectomy: outcomes in 222 patients. Ann Surg. 2003;238(4):486–95.PubMedPubMedCentralGoogle Scholar
  9. 9.
    DePaula AL, Hashiba K, Ferreira EA, et al. Laparoscopic transhiatal esophagectomy with esophagogastroplasty. Surg Laparosc Endosc. 1995;5(1):1–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Swanstrom LL, Hansen P. Laparoscopic total esophagectomy. Arch Surg. 1997;132(9):943–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Van den Broek WT, Makay O, Berends FJ, et al. Laparoscopically assisted transhiatal resection for malignancies of the distal esophagus. Surg Endosc. 2004;18(5):812–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Martin DJ, Bessell JR, Chew A, et al. Thoracoscopic and laparoscopicesoph agectomy: initial experience and outcomes. Surg Endosc. 2005;19(12):1597–601.PubMedCrossRefGoogle Scholar
  13. 13.
    Suzuki Y, Urashima M, Ishibashi Y, et al. Hand-assisted laparoscopic and thoracoscopic surgery (HALTS) in radical esophagectomy with threefield lymphadenectomy for thoracic esophageal cancer. Eur J Surg Oncol. 2005;31(10):1166–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Palanivelu C, Prakash A, Senthilkumar R, et al. Minimally invasive esophagectomy: thoracoscopic mobilization of the esophagus and mediastinal lymphadenectomy in prone position–experience of 130 patients. J Am Coll Surg. 2006;203(1):7–16.Google Scholar
  15. 15.
    Bonavina L, Incarbone R, Bona D, et al. Esophagectomy via laparoscopy and transmediastinal endodissection. J Laparoendosc Adv Surg Tech A. 2004;14(1):13–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Horgan S, Berger RA, Elli EF, Espat NJ. Robotic-assisted minimally invasive transhiatal esophagectomy. Am Surg. 2003;69:624–6.PubMedGoogle Scholar
  17. 17.
    Kernstine KH, DeArmond DT, Shamoun DM, Campos JH. The first series of completely robotic esophagectomies with three-field lymphadenectomy: Initial experience. Surg Endosc. 2007;21:2285–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Cerfolio RJ, Bryant AS, Hawn MT. Technical aspects and early results of robotic esophagectomy with chest anastomosis. J Thorac Cardiovasc Surg. 2013;145:90–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Merritt RE, Whyte RI, D’Arcy NT, et al. Morbidity and mortality after esophagectomy following neoadjuvant chemoradiation. Ann Thorac Surg. 2011;92(6):2034–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Luu TD, Gaur P, Force SD, et al. Neoadjuvant chemoradiation versus chemotherapy for patients undergoing esophagectomy for esophageal cancer. Ann Thorac Surg. 2008;85(4):1217–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Boone J, Livestro DP, Elias SG, et al. International survey on esophageal cancer: part I surgical techniques. Dis Esophagus. 2009;22:195–202.PubMedCrossRefGoogle Scholar
  22. 22.
    Luketich JD, Pennathur A, Awais O, et al. Outcomes after minimally invasive esophagectomy: review of over 1,000 patients. Ann Surg. 2012;256:95–103.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Decker G, Coosemans W, De Leyn P, et al. Minimally invasive esophagectomy for cancer. Eur J Cardiothorac Surg. 2009;35:13–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Javidfar J, Bacchetta M, Yang JA, et al. The use of a tailored surgical technique for minimally invasive esophagectomy. J Thorac Cardiovasc Surg. 2012;143:1125–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.PubMedCrossRefGoogle Scholar
  26. 26.
    Kernstine KH, DeArmond DT, Shamoun DM, Campos JH. The first series of completely robotic esophagectomies with three-field lymphadenectomy: Initial experience. Surg Endosc. 2007;21:2285–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Fabian T, Martin J, Katigbak M, McKelvey AA, Federico JA. Thoracoscopic esophageal mobilization during minimally invasive esophagectomy: a head-to-head comparison of prone versus decubitus positions. Surg Endosc. 2008;22:2485–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Kent MS, Schuchert M, Fernando H, Luketich JD. Minimally invasive esophagectomy: state of the art. Dis Esophagus. 2006;19:137–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Hui LI, Bin HU, Bin YOU, Jin-bai MIAO, Yi-li FU, Qi-rui CHEN. Combined laparoscopic and thoracoscopic Ivor Lewis esophagectomy for esophageal cancer: initial experience from China. Chin Med J. 2012;125(8):1376–80.Google Scholar
  30. 30.
    McKeown KC. Total three-stage oesophagectomy for cancer of the oesophagus. Br J Surg. 1976;63:259–62.PubMedCrossRefGoogle Scholar
  31. 31.
    Orringer MB, Sloan H. Esophagectomy without thoracotomy. J Thorac Cardiovasc Surg. 1978;76:643–54.PubMedGoogle Scholar
  32. 32.
    Watson DI, Davies N, Jamieson GG. Totally endoscopic Ivor Lewis esophagectomy. Surg Endosc. 1999;13:293–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Blackmon SH, Correa AM, Wynn B, Hofstetter WL, Martin LW, Mehran RJ, Rice DC, Swisher SG, Walsh GL, Roth JA, Vaporciyan AA. Propensity-matched analysis of three techniques for intrathoracic esophagogastric anastomosis. Ann Thorac Surg. 2007;83:1805–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Blackmon SH, Correa AM, Wynn B, Hofstetter WL, Martin LW, Mehran RJ, Rice DC, Swisher SG, Walsh GL, Roth JA, Vaporciyan AA. Propensity-matched analysis of three techniques for intrathoracic esophagogastric anastomosis. Ann Thorac Surg. 2007;83:1805–13.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee KW, Leung KF, Wong KK, Lau KY, Lai KC, Leung LC, Lau KW. One-stage thoracoscopic oesophagectomy: ligature intrathoracic stapled anastomosis. Aust N Z J Surg. 1997;67(2–3):131–2.PubMedCrossRefGoogle Scholar
  36. 36.
    Allsop JR. Ligature versus purse string for surgical stapled anastomoses. Aust N Z J Surg. 1992;62:740–2.PubMedCrossRefGoogle Scholar
  37. 37.
    Ng WT, Lee K, Kong CK, Cheung CH, Leung LC. Ligature versus purse string for surgical stapled anastomoses. Aust N Z J Surg. 1993;63:651–2.PubMedCrossRefGoogle Scholar
  38. 38.
    Maas KW, Biere SS, Scheepers JJG, Gisbertz SS, Turrado Rodriguez V, van der Peet DL, Cuesta MA. Minimally invasive intrathoracic anastomosis after Ivor Lewis esophagectomy for cancer: a review of transoral or transthoracic use of staplers. Surg Endosc. 2012;26:1795–802.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wittgrove AC, Clark WG, Tremblay LJ. Laparoscopic gastric bypass, Roux-en-Y: preliminary report of five cases. Obes Surg. 2004;4:353–7.CrossRefGoogle Scholar
  40. 40.
    Sutton CD, White SA, Marshall LJ, Berry DP, Veith PS. Endoscopic-assisted intrathoracic oesophagectomy without thoracotomy for tumours of the lower oesophagus and cardia. EJSO. 2002;28:46–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Nguyen NT, Hinojosa MW, Smith BR, Gray J, Reavis KM. Thoracoscopic construction of an intrathoracic esophagogastric anastomosis using a circular stapler: transoral placement of the anvil. Ann Thorac Surg. 2008;86:989–93.PubMedCrossRefGoogle Scholar
  42. 42.
    Campos MC, Jablons D, Brown LM, Ramirez RM, Rabl C, Theodore P. A safe reproducible anastomotic technique for minimally invasive Ivor Lewis esophagectomy: the circular-stapled anastomosis with the trans-oral anvil. Eur J Cardiothorac Surg. 2010;37:1421–6.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ben-David K, Sarosi GA, Cendan JC, Hochwald SN. Technique of minimally invasive Ivor Lewis esophagectomy with intrathoracic stapled side-to-side nastomosis. J Gastrointest Surg. 2010;14:1613–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Gorenstein LA, Bessler M, Sonett JR. Intrathoracic stapled esophagogastric anastomosis: an alternative to the end to end anastomosis. Ann Thorac Surg. 2011;91:314–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Lin FC, Durkin AE, Ferguson MK. Induction therapy does not increase surgical morbidity after esophagectomy for cancer. Ann Thorac Surg. 2004;78(5):1783–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Rice DC, Correa AM, Vaporciyan AA, Sodhi N, Smythe WR, Swisher SG, Walsh GL, Putnam Jr JB, Komaki R, Ajani JA, Roth JA. Preoperative chemoradiotherapy prior to esophagectomy in elderly patients is not associated with increased morbidity. Ann Thorac Surg. 2005;79(2):391–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Markar S, Gronnier C, Duhamel A, Bigourdan JM, Badic B, du Rieu MC, Lefevre JH, Turner K, Luc G, Mariette C. Pattern of postoperative mortality after esophageal cancer resection according to center volume: results from a large European multicenter study. Ann Surg Oncol. 2015;22(8):2615–23.PubMedCrossRefGoogle Scholar
  48. 48.
    Sihag S, Kosinski AS, Gaissert HA, Wright CD, Schipper PH. Minimally invasive versus open esophagectomy for esophageal cancer: a comparison of early surgical outcomes from The Society of Thoracic Surgeons National Database. Ann Thorac Surg. 2016;101(4):1281–9.PubMedCrossRefGoogle Scholar
  49. 49.
    In H, Palis BE, Merkow RP, Posner MC, Ferguson MK, Winchester DP, Pezzi CM. Doubling of 30-day mortality by 90 days after esophagectomy: a critical measure of outcomes for quality improvement. Ann Surg. 2016;263(2):286–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Derogar M, Orsini N, Sadr-Azodi O, Lagergren P. Influence of major postoperative complications on health-related quality of life among long-term survivors of esophageal cancer surgery. J Clin Oncol. 2012;30(14):1615–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Huang Q, Zhong J, Yang T, Li J, Luo K, Zheng Y, Yang H, Fu J. Impacts of anastomotic complications on the health-related quality of life after esophagectomy. J Surg Oncol. 2015;111(4):365–70.PubMedCrossRefGoogle Scholar
  52. 52.
    Short MN, Aloia TA, Ho V. The influence of complications on the costs of complex cancer surgery. Cancer. 2014;120(7):1035–41.PubMedCrossRefGoogle Scholar
  53. 53.
    Rutegård M, Lagergren P, Rouvelas I, Mason R, Lagergren J. Surgical complications and long-term survival after esophagectomy for cancer in a nationwide Swedish cohort study. Eur J Surg Oncol. 2012;38(7):555–61.PubMedCrossRefGoogle Scholar
  54. 54.
    Low DE, Alderson D, Cecconello I, Chang AC, Darling GE, DʼJourno XB, Griffin SM, Hölscher AH, Hofstetter WL, Jobe BA, Kitagawa Y, Kucharczuk JC, Law SY, Lerut TE, Maynard N, Pera M, Peters JH, Pramesh CS, Reynolds JV, Smithers BM, van Lanschot JJ, 2. International consensus on standardization of data collection for complications associated with esophagectomy: Esophagectomy Complications Consensus Group (ECCG). Ann Surg. 2015;262:286–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Ferguson MK, Celauro AD, Prachand V. Prediction of major pulmonary complications after esophagectomy. Ann Thorac Surg. 2011;91(5):1494–501.PubMedCrossRefGoogle Scholar
  56. 56.
    Molena D, Mungo B, Stem M, Lidor AO. Incidence and risk factors for respiratory complications in patients undergoing esophagectomy for malignancy: a NSQIP analysis. Semin Thoracic Surg. 2014;26:287–94.Google Scholar
  57. 57.
    Yoshida N, Watanabe M, Baba Y, Iwagami S, Ishimoto T, Iwatsuki M, Sakamoto Y, Miyamoto Y, Ozaki N, Baba H. Risk factors for pulmonary complications after esophagectomy for esophageal cancer. Surg Today. 2014;44(3):526–32.PubMedCrossRefGoogle Scholar
  58. 58.
    Ida S, Watanabe M, Yoshida N, Baba Y, Umezaki N, Harada K, Karashima R, Imamura Y, Iwagami S, Baba H. Sarcopenia is a predictor of postoperative respiratory complications in patients with esophageal cancer. Ann Surg Oncol. 2015;22(13):4432–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Nishigori T, Okabe H, Tanaka E, Tsunoda S, Hisamori S, Sakai Y. Sarcopenia as a predictor of pulmonary complications after esophagectomy for thoracic esophageal cancer. J Surg Oncol. 2016. doi: 10.1002/jso.24214.PubMedGoogle Scholar
  60. 60.
    Bludau M, Hölscher AH, Bollschweiler E, Leers JM, Gutschow CA, Brinkmann S, Schröder W. Preoperative airway colonization prior to transthoracic esophagectomy predicts postoperative pulmonary complications. Langenbecks Arch Surg. 2015;400(6):707–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Akutsu Y, Matsubara H, Okazumi S, Shimada H, Shuto K, Shiratori T, Ochiai T. Impact of preoperative dental plaque culture for predicting postoperative pneumonia in esophageal cancer patients. Dig Surg. 2008;25(2):93–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Akutsu Y, Matsubara H, Shuto K, Shiratori T, Uesato M, Miyazawa Y, Hoshino I, Murakami K, Usui A, Kano M, Miyauchi H. Pre-operative dental brushing can reduce the risk of postoperative pneumonia in esophageal cancer patients. Surgery. 2010;147(4):497–502.PubMedCrossRefGoogle Scholar
  63. 63.
    van Hagen P, Hulshof MC, van Lanschot JJ, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366:2074–84.PubMedCrossRefGoogle Scholar
  64. 64.
    Reinersman JM, Allen MS, Deschamps C, Ferguson MK, Nichols FC, Shen KR, Wigle DA, Cassivi SD. External validation of the Ferguson pulmonary risk score for predicting major pulmonary complications after oesophagectomy. Eur J Cardiothorac Surg. 2016;49(1):333–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Abou-Jawde RM, Mekhail T, Adelstein DJ, Rybicki LA, Mazzone PJ, Caroll MA, Rice TW. Impact of induction concurrent chemoradiotherapy on pulmonary function and postoperative acute respiratory complications in esophageal cancer. Chest. 2005;128(1):250–5.PubMedCrossRefGoogle Scholar
  66. 66.
    van Adrichem EJ, Meulenbroek RL, Plukker JT, Groen H, van Weert E. Comparison of two preoperative inspiratory muscle training programs to prevent pulmonary complications in patients undergoing esophagectomy: a randomized controlled pilot study. Ann Surg Oncol. 2014;21(7):2353–60.PubMedGoogle Scholar
  67. 67.
    Yamana I, Takeno S, Hashimoto T, Maki K, Shibata R, Shiwaku H, Shimaoka H, Shiota E, Yamashita Y. Randomized controlled study to evaluate the efficacy of a preoperative respiratory Rehabilitation Program to Prevent Postoperative Pulmonary Complications after Esophagectomy. Dig Surg. 2015;32(5):331–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Inoue J, Ono R, Makiura D, Kashiwa-Motoyama M, Miura Y, Usami M, Nakamura T, Imanishi T, Kuroda D. Prevention of postoperative pulmonary complications through intensive preoperative respiratory rehabilitation in patients with esophageal cancer. Dis Esophagus. 2013;26(1):68–74.PubMedCrossRefGoogle Scholar
  69. 69.
    Weijs TJ, Ruurda JP, Nieuwenhuijzen GA, van Hillegersberg R, Luyer MD. Strategies to reduce pulmonary complications after esophagectomy. World J Gastroenterol. 2013;19(39):6509–14.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lee TH, Marcantonio ER, Mangione CM, Thomas EJ, Polanczyk CA, Cook EF, Sugarbaker DJ, Donaldson MC, Poss R, Ho KK, Ludwig LE, Pedan A, Goldman L. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999;100(10):1043–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, Davila-Roman VG, Gerhard-Herman MD, Holly TA, Kane GC, Marine JE, Nelson MT, Spencer CC, Thompson A, Ting HH, Uretsky BF, Wijeysundera DN, American College of Cardiology; American Heart Association, 22. ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64:e77–137.PubMedCrossRefGoogle Scholar
  72. 72.
    Day RW, Jaroszewski D, Chang YH, Ross HJ, Paripati H, Ashman JB, Rule WG, Harold KL. Incidence and impact of postoperative atrial fibrillation after minimally invasive esophagectomy. Dis Esophagus. 2015. doi: 10.1111/dote.12355.PubMedGoogle Scholar
  73. 73.
    Mc Cormack O, Zaborowski A, King S, Healy L, Daly C, OʼFarrell N, Donohoe CL, Ravi N, Reynolds JV, 5. New-onset atrial fibrillation post-surgery for esophageal and junctional cancer: incidence, management, and impact on short- and long-term outcomes. Ann Surg. 2014;260:772–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Trinh VQ, Karakiewicz PI, Sammon J, Sun M, Sukumar S, Gervais MK, Shariat SF, Tian Z, Kim SP, Kowalczyk KJ, Hu JC, Menon M, Trinh QD. Venous thromboembolism after major cancer surgery: temporal trends and patterns of care. JAMA Surg. 2014;149(1):43–9.PubMedCrossRefGoogle Scholar
  75. 75.
    De Martino RR, Goodney PP, Spangler EL, Wallaert JB, Corriere MA, Rzucidlo EM, Walsh DB, Stone DH. Variation in thromboembolic complications among patients undergoing commonly performed cancer operations. J Vasc Surg. 2012;55(4):1035–40.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Sammon J, Trinh VQ, Ravi P, Sukumar S, Gervais MK, Shariat SF, Larouche A, Tian Z, Kim SP, Kowalczyk KJ, Hu JC, Menon M, Karakiewicz PI, Trinh QD, Sun M. Health care-associated infections after major cancer surgery: temporal trends, patterns of care, and effect on mortality. Cancer. 2013;119(12):2317–24.PubMedCrossRefGoogle Scholar
  77. 77.
    Anandavadivelan P, Lagergren P. Cachexia in patients with oesophageal cancer. Nat Rev Clin Oncol. 2016;13(3):185–98.PubMedCrossRefGoogle Scholar
  78. 78.
    Martin L, Senesse P, Gioulbasanis I, Antoun S, Bozzetti F, Deans C, Strasser F, Thoresen L, Jagoe RT, Chasen M, Lundholm K, Bosaeus I, Fearon KH, Baracos VE. Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol. 2015;33(1):90–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Vashist YK, Loos J, Dedow J, Tachezy M, Uzunoglu G, Kutup A, Yekebas EF, Izbicki JR. Glasgow Prognostic Score is a predictor of perioperative and long-term outcome in patients with only surgically treated esophageal cancer. Ann Surg Oncol. 2011;18(4):1130–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Hirahara N, Matsubara T, Hayashi H, Takai K, Fujii Y, Tajima Y. Impact of inflammation-based prognostic score on survival after curative thoracoscopic esophagectomy for esophageal cancer. Eur J Surg Oncol. 2015;41(10):1308–15.PubMedCrossRefGoogle Scholar
  81. 81.
    Adenis A, Tresch E, Dewas S, Romano O, Messager M, Amela E, Clisant S, Kramar A, Mariette C, Mirabel X. Clinical complete responders to definite chemoradiation or radiation therapy for oesophageal cancer: predictors of outcome. BMC Cancer. 2013;13:413–21.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hodari A, Hammoud ZT, Borgi JF, Tsiouris A, Rubinfeld IS. Assessment of morbidity and mortality after esophagectomy using a modified frailty index. Ann Thorac Surg. 2013;96(4):1240–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Yip C, Goh V, Davies A, Gossage J, Mitchell-Hay R, Hynes O, Maisey N, Ross P, Gaya A, Landau DB, Cook GJ, Griffin N, Mason R. Assessment of sarcopenia and changes in body composition after neoadjuvant chemotherapy and associations with clinical outcomes in oesophageal cancer. Eur Radiol. 2014;24(5):998–1005.PubMedCrossRefGoogle Scholar
  84. 84.
    Ida S, Watanabe M, Karashima R, Imamura Y, Ishimoto T, Baba Y, Iwagami S, Sakamoto Y, Miyamoto Y, Yoshida N, Baba H. Changes in body composition secondary to neoadjuvant chemotherapy for advanced esophageal cancer are related to the occurrence of postoperative complications after esophagectomy. Ann Surg Oncol. 2014;21(11):3675–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G. McBurnie MA; Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56.PubMedCrossRefGoogle Scholar
  86. 86.
    Bibas L, Levi M, Bendayan M, Mullie L, Forman DE, Afilalo J. Therapeutic interventions for frail elderly patients: Part I. published randomized trials. Prog Cardiovasc Dis. 2014;52(2):134–43.CrossRefGoogle Scholar
  87. 87.
    Fekete F, Belghiti J, Cherqui D, Langonnet F, Gayet B. Results of esophagogastrectomy for carcinoma in cirrhotic patients. A series of 23 consecutive patients. Ann Surg. 1987;206(1):74–8.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lu MS, Liu YH, Wu YC, Kao CL, Liu HP, Hsieh MJ. Is it safe to perform esophagectomy in esophageal cancer patients combined with liver cirrhosis? Interact Cardiovasc Thorac Surg. 2005;4(5):423–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Harustiak T, Pazdro A, Snajdauf M, Stolz A, Lischke R. Anastomotic leak and stricture after hand-sewn versus linear-stapled intrathoracic oesophagogastric anastomosis: single-centre analysis of 415 oesophagectomies. Eur J Cardiothorac Surg. 2015;49:ezv395.Google Scholar
  90. 90.
    Van Daele E, Van de Putte D, Ceelen W, Van Nieuwenhove Y, Pattyn P. Risk factors and consequences of anastomotic leakage after Ivor Lewis oesophagectomy. Interact Cardiovasc Thorac Surg. 2016;22(1):32–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Blencowe NS, Strong S, McNair AG, Brookes ST, Crosby T, Griffin SM, Blazeby JM. Reporting of short-term clinical outcomes after esophagectomy: a systematic review. Ann Surg. 2012;255(4):658–66. doi: 10.1097/SLA.0b013e3182480a6a.PubMedCrossRefGoogle Scholar
  92. 92.
    Low DE, Alderson D, Cecconello I, Chang AC, Darling GE, DʼJourno XB, Griffin SM, Hölscher AH, Hofstetter WL, Jobe BA, Kitagawa Y, Kucharczuk JC, Law SY, Lerut TE, Maynard N, Pera M, Peters JH, Pramesh CS, Reynolds JV, Smithers BM, van Lanschot JJ. International consensus on standardization of data collection for complications associated with esophagectomy: Esophagectomy Complications Consensus Group (ECCG). Ann Surg. 2015;262(2):286–94. doi: 10.1097/SLA.0000000000001098.PubMedCrossRefGoogle Scholar
  93. 93.
    Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62(1):10–29. 10.322/caac.20138.PubMedCrossRefGoogle Scholar
  94. 94.
    Lin CS, Chang SC, Wei YH, et al. Prognostic variables in thoracic esophageal squamous cell carcinoma. Ann Thorac Surg. 2009;87:1056–65. doi: 10.1016/j.athoracsur.2008.11.051.PubMedCrossRefGoogle Scholar
  95. 95.
    Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti AI, editors. AJCC cancer staging manual, Esophagus and esophagogastric junction. 7th ed. New York: Springer; 2009.Google Scholar
  96. 96.
    Stein HJ, Kraemer SJ, Feussner H, et al. Clinical value of diagnostic laparoscopy with laparoscopic ultrasound in patients with cancer of the esophagus or cardia. J Gastrointest Surg. 1997;1:167–73.PubMedCrossRefGoogle Scholar
  97. 97.
    Convie L, Thompson RJ, Kennedy R, et al. The current role of staging laparoscopy in oesophagogastric cancer. Ann R Coll Surg Engl. 2015;97:14650. doi: 10.1308/003588414X14055925061270.CrossRefGoogle Scholar
  98. 98.
    Rice TW, Blackstone EH. Esophageal cancer staging: past, present, and future. Thorac Surg Clin. 2013;23:461–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Rice TW, Rusch VW, Apperson-Hansen C, et al. Worldwide esophageal cancer collaboration. Dis Esophagus. 2009;22:1–8. doi: 10.1111/j.1442-2050.2008.00901.x.PubMedCrossRefGoogle Scholar
  100. 100.
    Rice TW, Rusch VW, Ishwaran H, Worldwide Esophageal Cancer Collaboration, et al. Cancer of the esophagus and esophagogastric junction: data-driven staging for the seventh edition of the American Joint Committee on Cancer/International Union Against Cancer Cancer Staging Manuals. Cancer. 2010;116:3763–73. doi: 10.1002/cncr.25146.PubMedCrossRefGoogle Scholar
  101. 101.
    Liu L, Hofstetter WL, Rashid A, et al. Significance of the depth of tumor invasion and lymph node metastasis in superficially invasive (T1) esophageal adenocarcinoma. Am J Surg Pathol. 2005;29:1079–85.PubMedGoogle Scholar
  102. 102.
    Rice TW, Zuccaro Jr G, Adelstein DJ, et al. Esophageal carcinoma: depth of tumor invasion is predictive of regional lymph node status. Ann Thorac Surg. 1998;65:787–92. doi: 10.1016/S0003-4975(97)01387-8.PubMedCrossRefGoogle Scholar
  103. 103.
    Hölscher AH, Bollschweiler E, Schröder W, et al. Prognostic impact of upper, middle, and lower third mucosal or submucosal infiltration in early esophageal cancer. Ann Surg. 2011;254:802–8. doi: 10.1097/SLA.0b013e3182369128.PubMedCrossRefGoogle Scholar
  104. 104.
    Rasanen JV, Sihvo EI, Knuuti MJ, et al. Prospective analysis of accuracy of positron emission tomography, computed tomography, and endoscopic ultrasonography in staging of adenocarcinoma of the esophagus and the esophagogastric junction. Ann Surg Oncol. 2003;10:954–60. doi: 10.1245/ASO.2003.12.002.PubMedCrossRefGoogle Scholar
  105. 105.
    Khanna LG, Gress FG. Preoperative evaluation of oesophageal adenocarcinoma. Best Pract Res Clin Gastroenterol. 2015;29:179–91. doi: 10.1016/j.bpg.2014.12.005.PubMedCrossRefGoogle Scholar
  106. 106.
    Godoy MC, Bruzzi JF, Viswanathan C, et al. Multimodality imaging evaluation of esophageal cancer: staging, therapy assessment, and complications. Abdom Imaging. 2013;38:974–93. doi: 10.1007/s00261-013-9986-7.PubMedCrossRefGoogle Scholar
  107. 107.
    Lewis JT, Wang KK, Abraham SC. Muscularis mucosae duplication and the musculo-fibrous anomaly in endoscopic mucosal resections for Barrett esophagus: implications for staging of adenocarcinoma. Am J Surg Pathol. 2008;32:566–71. doi: 10.1097/PAS.0b013e31815bf8c7.PubMedCrossRefGoogle Scholar
  108. 108.
    Mandal RV, Forcione DG, Brugge WR, et al. Effect of tumor characteristics and duplication of the muscularis mucosae on the endoscopic staging of superficial Barrett esophagus-related neoplasia. Am J Surg Pathol. 2009;33:620–5. doi: 10.1097/PAS.0b013e31818d632f.PubMedCrossRefGoogle Scholar
  109. 109.
    Pech O, Gunter E, Dusemund F, et al. Value of high-frequency miniprobes and conventional radial endoscopic ultrasound in the staging of early Barrett’s carcinoma. Endoscopy. 2010;42:98–103. doi: 10.1055/s-0029-1243839.PubMedCrossRefGoogle Scholar
  110. 110.
    Stiles BM, Mirza F, Port JL, Lee PC, Paul S, Christos P, Altorki NK. Predictors of cervical and recurrent laryngeal lymph node metastases from esophageal cancer. Ann Thorac Surg. 2010;90(6):1805–11. doi: 10.1016/j.athoracsur.2010.06.085.PubMedCrossRefGoogle Scholar
  111. 111.
    Prenzel KL, Bollschweiler E, Schroder W, et al. Prognostic relevance of skip metastases in esophageal cancer. Ann Thorac Surg. 2010;90:1662–7. doi: 10.1016/j.athoracsur.2010.07.008.PubMedCrossRefGoogle Scholar
  112. 112.
    Penman ID, Henry E. Advanced esophageal cancer. Gastrointest Endosc Clin N Am. 2005;15:101–6. doi: 10.1016/j.giec.2004.07.002.PubMedCrossRefGoogle Scholar
  113. 113.
    Lowe VJ, Booya F, Fletcher JG, et al. Comparison of positron emission tomography, computed tomography, and endoscopic ultrasound in the initial staging of patients with esophageal cancer. Mol Imaging Biol. 2005;7:422–30. doi: 10.1007/s11307-005-0017-0.PubMedCrossRefGoogle Scholar
  114. 114.
    van Westreenen HL, Westerterp M, Bossuyt PM, et al. Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol. 2004;22:3805–12. doi: 10.1200/JCO.2004.01.083.PubMedCrossRefGoogle Scholar
  115. 115.
    van Vliet EP, Heijenbrok-Kal MH, Hunink MG, et al. Staging investigations for oesophageal cancer: a meta-analysis. Br J Cancer. 2008;98:547–57. doi: 10.1038/sj.bjc.6604200.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Vazquez-Sequeiros E, Norton ID, Clain JE, et al. Impact of EUS-guided fine-needle aspiration on lymph node staging in patients with esophageal carcinoma. Gastrointest Endosc. 2001;53:751–7. doi: 10.1067/mge.2001.112741.PubMedCrossRefGoogle Scholar
  117. 117.
    Quint LE, Hepburn LM, Francis IR, et al. Incidence and distribution of distant metastases from newly diagnosed esophageal carcinoma. Cancer. 1995;76:1120–5.PubMedCrossRefGoogle Scholar
  118. 118.
    Berrisford RG, Wong WL, Day D, Toy E, Napier M, Mitchell K, Wajed S. The decision to operate: role of integrated computed tomography positron emission tomography in staging oesophageal and oesophagogastric junction cancer by the multidisciplinary team. Eur J Cardiothorac Surg. 2008;33(6):1112–6. doi: 10.1016/j.ejcts.2008.01.055.PubMedCrossRefGoogle Scholar
  119. 119.
    Weber WA, Ott K. Imaging of esophageal and gastric cancer. Semin Oncol. 2004;31:530–41. doi: 10.1053/j.seminoncol.2004.04.016.PubMedCrossRefGoogle Scholar
  120. 120.
    Davies AR, Gossage JA, Zylstra J, et al. Tumor stage after neoadjuvant chemotherapy determines survival after surgery for adenocarcinoma of the esophagus and esophagogastric junction. J Clin Oncol. 2014;32:2983–90. doi: 10.1200/JCO.2014.55.9070.PubMedCrossRefGoogle Scholar
  121. 121.
    Wang CC, Cheng JC, Tsai CL, et al. Pathological stage after neoadjuvant chemoradiation and esophagectomy superiorly predicts survival in patients with esophageal squamous cell carcinoma. Radiother Oncol. 2015;115(1):9–15. doi: 10.1016/j.radonc.2015.03.019.PubMedCrossRefGoogle Scholar
  122. 122.
    Cerfolio RJ, Bryant AS, Ohja B, et al. The accuracy of endoscopic ultrasonography with fine-needle aspiration, integrated positron emission tomography with computed tomography, and computed tomography in restaging patients with esophageal cancer after neoadjuvant chemoradiotherapy. J Thorac Cardiovasc Surg. 2005;129:1232–41. doi: 10.1016/j.jtcvs.2004.12.042.PubMedCrossRefGoogle Scholar
  123. 123.
    Jamil LH, Gill KR, Wallace MB. Staging and restaging of advanced esophageal cancer. Curr Opin Gastroenterol. 2008;24:530–4. doi: 10.1097/MOG.0b013e3283025c91.PubMedCrossRefGoogle Scholar
  124. 124.
    Bruzzi JF, Munden RF, Truong MT, et al. PET/CT of esophageal cancer: its role in clinical management. Radiographics. 2007;27:1635–52. doi:http://dx.doi.org/ 10.1148/rg.276065742.PubMedCrossRefGoogle Scholar
  125. 125.
    Wieder HA, Brücher BL, Zimmermann F, et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol. 2004;22:900–8. doi: 10.1200/JCO.2004.07.122.PubMedCrossRefGoogle Scholar
  126. 126.
    Swisher SG, Erasmus J, Maish M, et al. 2-Fluoro-2-deoxy-D glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer. 2004;101:1776–85. doi: 10.1002/cncr.20585.PubMedCrossRefGoogle Scholar
  127. 127.
    Bruzzi JF, Swisher SG, Truong MT, et al. Detection of interval distant metastases: clinical utility of integrated CT-PET imaging in patients with esophageal carcinoma after neoadjuvant therapy. Cancer. 2007;109:125–34. doi: 10.1002/cncr.22397.PubMedCrossRefGoogle Scholar
  128. 128.
    Rice TW, Blackstone EH, Rusch VW. 7th edition of the AJCC Cancer Staging Manual: esophagus and esophagogastric junction. Ann Surg Oncol. 2010;17:1721–4.PubMedCrossRefGoogle Scholar
  129. 129.
    Luketich JD, Pennathur A, Awais O, et al. Outcomes after minimally invasive esophagectomy: review of over 1000 patients. Ann Surg. 2012;256:95–103. doi: 10.1097/SLA.0b013e3182590603.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Sgourakis G, Gockel I, Radtke A, et al. Minimally invasive versus open esophagectomy: meta-analysis of outcomes. Dig Dis Sci. 2010;55:3031–40. doi: 10.1007/s10620-010-1153-1.PubMedCrossRefGoogle Scholar
  131. 131.
    Biere SS, van Berge Henegouwen MI, Maas KW, et al. Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial 379. Lancet. 2012;19:1887–92. doi: 10.1016/S0140-6736(12)60516-9.CrossRefGoogle Scholar
  132. 132.
    Nagpal K, Ahmed K, Vats A, et al. Is minimally invasive surgery beneficial in the management of esophageal cancer? A meta-analysis. Surg Endosc. 2010;24:1621–9. doi: 10.1007/s00464-009-0822-7.PubMedCrossRefGoogle Scholar
  133. 133.
    Dantoc MM, Cox MR, Eslick GD. Does minimally invasive esophagectomy (MIE) provide for comparable oncologic outcomes to open techniques? A systematic review. J Gastrointest Surg. 2012;16:486–94. doi: 10.1007/s11605-011-1792-3.PubMedCrossRefGoogle Scholar
  134. 134.
    Dantoc M, Cox MR, Eslick GD. Evidence to support the use of minimally invasive esophagectomy for esophageal cancer: a meta-analysis. Arch Surg. 2012;147:768–76. doi: 10.1001/archsurg.2012.1326.PubMedCrossRefGoogle Scholar
  135. 135.
    Hsu PK, Huang CS, Wu YC, et al. Open versus thoracoscopic esophagectomy in patients with esophageal squamous cell carcinoma. World J Surg. 2014;38:402–9. doi: 10.1007/s00268-013-2265-5.PubMedCrossRefGoogle Scholar
  136. 136.
    Cohen DJ, Leichman L. Controversies in the treatment of local and locally advanced gastric and esophageal cancers. J Clin Oncol. 2015;33:1754–9. doi: 10.1200/JCO.2014.59.7765.PubMedCrossRefGoogle Scholar
  137. 137.
    The National Comprehensive Cancer Network Guidelines in Oncology. Esophageal cancer. http://www.nccn.org. Accessed 12 Jul 2015.
  138. 138.
    Tapias LF, Morse CR. Minimally invasive Ivor Lewis esophagectomy: description of a learning curve. J Am Coll Surg. 2014;218(6):1130–40. doi: 10.1016/j.jamcollsurg.2014.02.014.PubMedCrossRefGoogle Scholar
  139. 139.
    Bakhos C, Oyasiji T, Elmadhun N, Kent M, Gangadharan S, Critchlow J, Fabian T. Feasibility of minimally invasive esophagectomy after neoadjuvant chemoradiation. J Laparoendosc Adv Surg Tech A. 2014;24(10):688–92. doi: 10.1089/lap.2014.0118.PubMedCrossRefGoogle Scholar
  140. 140.
    Luketich JD, Pennathur A, Awais O, et al. Outcomes after minimally invasive esophagectomy: review of over 1000 patients. Ann Surg. 2012;256:95–103.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Sarkaria IS, Bains MS, Finley DJ, et al. Intraoperative near-infrared fluorescence imaging as an adjunct to robotic-assisted minimally invasive esophagectomy. Innovations. 2014;9:391–3.PubMedGoogle Scholar
  142. 142.
    Sarkaria IS, Rizk NP, Finley DJ, et al. Combined thoracoscopic and laparoscopic robotic-assisted minimally invasive esophagectomy using a four-arm platform: experience, technique and cautions during early procedure development. Eur J Cardiothorac Surg:Off J Eur Assoc Cardiothorac Surg. 2013;43:e107–15.CrossRefGoogle Scholar
  143. 143.
    Price TN, Allen MS, Nichols 3rd FC, et al. Hiatal hernia after esophagectomy: analysis of 2,182 esophagectomies from a single institution. Ann Thorac Surg. 2011;92:2041–5.PubMedCrossRefGoogle Scholar

Suggested Reading

  1. Cuschieri A, Shimi S, Banting S. Endoscopic oesophagectomy through a right thoracoscopic approach. J R Coll Surg Edinb. 1992;37(1):7–11.PubMedGoogle Scholar
  2. Gossot D, Fourquier P, Celerier M. Thoracoscopic esophagectomy: technique and initial results. Ann Thorac Surg. 1993;56(3):667–70.PubMedCrossRefGoogle Scholar
  3. Bumm R, Holscher AH, Feussner H. Endodissection of the thoracic esophagus. Technique and clinical results in transhiatal esophagectomy. Ann Surg. 1993;218:97–104.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Sadanaga N, Kuwano H, Watanabe M, et al. Laparoscopy-assisted surgery: a new technique for transhiatal esophageal dissection. Am J Surg. 1994;168(4):355–7.PubMedCrossRefGoogle Scholar
  5. DePaula AL, Hashiba K, Ferreira EAB, et al. Transhiatal approach for esophagectomy. In: Toouli J, Gossot D, Hunter JG, editors. Endosurgery. New York: Churchill Livingstone; 1996. p. 293–9.Google Scholar
  6. Swanstrom LL, Hansen P. Laparoscopic total esophagectomy. Arch Surg. 1997;132:943–9.PubMedCrossRefGoogle Scholar
  7. Nguyen NT, Schauer PR, Luketich JD. Combined laparoscopic and thoracoscopic approach to esophagectomy. J Am Coll Surg. 1999;188(3):328–32.PubMedCrossRefGoogle Scholar
  8. Luketich JD, Alvelo-Rivera M, Buenaventura PO, et al. Minimally invasive esophagectomy: outcomes in 222 patients. Ann Surg. 2003;238(4):486–94.PubMedPubMedCentralGoogle Scholar
  9. Bartels K, Fiegel M, Stevens Q, et al. Approaches to Perioperative Care for Esophagectomy. J Cardiothorac Vasc Anesth. 2015;29(2):472–80.PubMedCrossRefGoogle Scholar
  10. Carney A, Dickinson M. Anesthesia for Esophagectomy. Anesthesiol Clin. 2015;33(1):143–63.PubMedCrossRefGoogle Scholar
  11. Thomas E. Borsari, Ibtesam A. Hilmi, Tetsuro, et al. Perioperative pulmonary aspiration of patients who have had an esophagectomy with a gastric pull-up: the value of preoperative computed tomography of the neck. J Clin Anesth. 2011;23(2):130–3.CrossRefGoogle Scholar
  12. Yamasaki H, Tanaka K, Funai Y, et al. The Impact of Intraoperative Hypothermia on Early Postoperative Adverse Events After Radical Esophagectomyfor Cancer: A Retrospective Cohort Study. J Cardiothorac Vasc Anesth. 2014;28(4):943–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Hui Li
    • 2
  • Diego Avella Patino
    • 3
  • Mark K. Ferguson
    • 4
    Email author
  • Jianfeng Li
    • 5
  • Xiao Li
    • 5
  • Inderpal S. Sarkaria
    • 6
  • James D. Luketich
    • 6
  • Yi Feng
    • 1
  • Juan Zhu
    • 1
  1. 1.Department of AnesthesiologyPeking University People’s HospitalBeijingChina
  2. 2.General Thoracic SurgeryBeijing Chaoyang HospitalBeijingChina
  3. 3.Department of SurgeryThe University of ChicagoChicagoUSA
  4. 4.Thoracic Surgery ServiceUniversity of Chicago MedicineChicagoUSA
  5. 5.Department of Thoracic SurgeryPeking University People’s HospialBeijingChina
  6. 6.Department of Cardiothoracic SurgeryUniversity of PittsburghPittsburghUSA

Personalised recommendations