Advertisement

An Empirical Assessment of Variable Water Content and Grain-Size on X-Ray Fluorescence Core-Scanning Measurements of Deep Sea Sediments

  • Suzanne E. MacLachlanEmail author
  • James E. Hunt
  • Ian W. Croudace
Chapter
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 17)

Abstract

Deciphering the signal within X-ray fluorescence (XRF) core scanner data can be complex in comparison to conventional laboratory XRF analysis where samples are milled and pelleted or beaded. One complicating factor is that the down-core variability in water content and grain-size can affect element count rates thereby potentially leading to inaccurate interpretations. Experiences using an Itrax XRF core scanner data highlight some of the pitfalls that can occur when the sediment is inhomogeneous. We show that over a threshold of 25 wt.% coarse grained material ( > 63 µm) within the sediment there is a potential for causing significant variability in certain elements. It is also shown that water content variability has a major effect above 40 %.

Keywords

X-ray fluorescence XRF core scanner Water content Physical properties Marine sediment 

References

  1. Bertrand S, Hughen K, Giosan L (2015) Limited influence of sediment grain size on elemental XRF core scanner measurements. This volumeGoogle Scholar
  2. Blott SJ, Pye K (2001) Gradistat: a grain-size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Proc Land 26:1237–1248CrossRefGoogle Scholar
  3. Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. In: Rothwell RG (ed) New techniques in sediment core analysis, vol 267. Geological Society Special Publication, London pp 51–63Google Scholar
  4. Croudace IW, Romano E, Ausili A, Bergamin L, Rothwell RG (2015) X-ray core scanners as an environmental forensic tool: a case study of polluted harbour sediment (Augusta Bay, Sicily). This volumeGoogle Scholar
  5. Guyard H, Chapron E, St-Onge G, Anselmetti FS, Arnaud F, Magand O, Francus P, Mélières M-A (2007) High-altitude varve records of abrupt environmental changes and mining activities over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif). Quat Sci Rev 26:2644–2660CrossRefGoogle Scholar
  6. Hennekam R, de Lange G (2012) X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records. Limnol Oceanogr Meth 10:91–1003CrossRefGoogle Scholar
  7. Howe JA (1995) Sedimentary processes and variations in slope-current activity during the last glacial-interglacial episode on the Hebrides Slope, northern Rockall Trough, North Atlantic ocean. Sediment Geol 96:201–230CrossRefGoogle Scholar
  8. Howe JA (1996) Turbidite and contourite sediment waves in the Northern Rockall Trough, North Atlantic ocean. Sedimentology 43:219–234CrossRefGoogle Scholar
  9. Hunt JE, Wynn RB, Talling PJ, Masson DG (2013) Frequency and timing of landslide-triggered turbidity currents within the Agadir Basin, offshore NW Africa: are there associations with climate change and slope sedimentation rates? Mar Geol 346:274–291Google Scholar
  10. Hunt JE, Croudace IW, MacLachlan SE (2015) Use of calibrated Itrax XRF data in examining turbidite composition and provenance in Agadir Basin, Northwest African Passive margin. This volumeGoogle Scholar
  11. Kenyon NH (1986) Evidence from bedforms for a strong poleward current along the upper continental slope of Northwest Europe. Mar Geol 72:187–198CrossRefGoogle Scholar
  12. Kido Y, Koshikawa T, Tada R (2006) Rapid and quantitative major element analysis method for wet fine-grained sediments using an XRF microscanner. Mar Geol 229: 209–225CrossRefGoogle Scholar
  13. Masson DG Howe JA, Stoker MS (2002) Bottom current sediment waves, sediment drift and contourites in the northern Rockall Trough. Mar Geol 192:215–237CrossRefGoogle Scholar
  14. Masson DG, Bett BJ, Billet DSM, Jacobs CL, Wheeler AJ, Wynn RB (2003) The origin of deep-water, coral-topped mounds in the northern Rockall Trough, Northeast Atlantic. Mar Geol 194:159–180CrossRefGoogle Scholar
  15. Richter RO, van der Gaast S, Koster R, Vaars A, Gieles R, de Stigter HC, de Haas H, van Weering TCE (2006) The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. In: Rothwell RG (ed) New techniques in sediment core analysis, vol 267. Geological Society Special Publication, London pp 39–50Google Scholar
  16. Rothwell RG, Rack FR (2006) New techniques in sediment core analysis: an introduction. In: Rothwell RG (ed) New techniques in sediment core analysis, vol 267. Geological Society Special Publication, London pp 1–29Google Scholar
  17. Rothwell RG, Hoogakker B, Thomson J, Croudace IW, Frenz M (2006) Turbidite emplacement on the southern Baleraic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stages 1–3: an application of ITRAX XRF scanning of sediment cores to lithostratigraphic analysis. In: Rothwell RG (ed) New techniques in sediment core analysis, vol 267. Geological Society Special Publication, pp 79–98Google Scholar
  18. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014. doi:10.1029/2008GC002332CrossRefGoogle Scholar
  19. Serpetti N, Gontikaki E, Narayanaswamy BE, Witte U (2013) Macrofaunal community inside and outside of the Darwin Mounds special area of conservation, NE Atlantic. Biogeosciences 10:3705–3714CrossRefGoogle Scholar
  20. Stoker MS, Akhurst MC, Howe JA, Stow DAV (1998) Sediment drifts and contourites on the continental margin off northwest Britain. Sediment Geol 155:33–51CrossRefGoogle Scholar
  21. Tian J, Xie X, Ma W, Jin H, Wang P (2011) X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea. Paleoceanography:PA4202. doi:10.1029/PA002045Google Scholar
  22. Tjallingii R, Röhl U, Kölling M, Bickert T (2007) Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochem Geophys Geosyst Geosy Geosyst 8:Q02004. doi:10.1029/2006GC001393CrossRefGoogle Scholar
  23. Westerhold T, Röhl U, Laskar, J, Raffi I, Bowles J, Lourens LJ, Zachos JC (2007) On the duration of magnetochrons C54r and C25n and the timing of early Eocene global warming events: implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography:PA2201. doi:10.1029/2006PA001322Google Scholar
  24. Wilhelms-Dick D, Westerhold T, Röhl U (2012) A comparison of mm scale resolution techniques for element analysis in sediment cores. J Anal At Spectrom 27:1574–1584CrossRefGoogle Scholar
  25. Ziegler M, Simon MH, Hall IR, Barker S, Stringer C, Zahn R (2013) Development of Middle Stone Age innovation linked to rapid climate change. Nature Commun 4:1905. doi:10.1038/ncomms2897CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Suzanne E. MacLachlan
    • 1
    Email author
  • James E. Hunt
    • 2
  • Ian W. Croudace
    • 3
  1. 1.National Oceanography CentreSouthamptonUK
  2. 2.Marine GeoscienceNational Oceanography CentreSouthamptonUK
  3. 3.Ocean and Earth ScienceNational Oceanography Centre, University of Southampton, Waterfront CampusSouthamptonUK

Personalised recommendations