Twenty Years of XRF Core Scanning Marine Sediments: What Do Geochemical Proxies Tell Us?

  • R. Guy RothwellEmail author
  • Ian w. Croudace
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 17)


XRF core scanners, with their rapid and non-destructive analytical capability, have now been used for two decades in the analysis of marine sediments. Initially they were used to record variations in fundamental parameters such as calcium carbonate stratigraphy and terrigenous sediment delivery, using major element integrals, such as Ca and Fe, to provide detailed insights into oceanographic and climatic processes. In recent years, proxy selection has progressed to routine normalisation and presentation as log-ratios to include 60 elements or ratios to document a wide range of environmental and process changes. We review the development and application of XRF core scanning of marine sediments and discuss the basis of particular proxies, their uses and limitations to assist users in their selection. To date, there has been no systematic overview of elemental proxies and their application in the analysis of marine sediment records.


XRF core scanning AVAATECH core scanner ITRAX core scanner X-ray fluorescence Geochemical proxies Environmental analysis Marine sediments 



We are very grateful to Mike Rogerson and James Hunt for their comments in review which helped improve the paper. We thank Michael Haschke, Steffen Wolters, Thomas Richter, Cletus Itambi, Alan Seaman, Springer, The Geological Society of London, John Wiley and Sons, and Taylor & Francis for permission to reproduce previously published figures. John Smol is thanked for his editorial handling of this paper. We also thank Kate Davis for help in drafting figures.


  1. Abrantes F, Alt-Epping U, Lebreiro S, Voelker A, Schneider R (2008) Sedimentological record of tsunamis on shallow-shelf areas: the case of the 1969 AD and 1755 AD tsunamis on the Portuguese Shelf off Lisbon. Mar Geol 249:283–293. doi:10.1016/j.margeo.2007.12.004Google Scholar
  2. Adgebie AT, Schneider RR, Röhl U, Wefer G (2003) Glacial millennial-scale fluctuations in central African precipitation recorded in terrigenous sediment supply and freshwater signals offshore Cameroon. Palaeogeogr Palaeoclimatol Palaeoecol 197:323–333. doi:10.1016/S0031-0182(03)00474-7Google Scholar
  3. Adkins J, de Menocal P, Eshel G (2006) The ‘‘African humid period’’ and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C. Paleoceanography 21:PA4203. doi:10.1029/2005PA001200Google Scholar
  4. Aitchison J (1982) The statistical analysis of compositional data (with discussion). J Roy Stat Soc B 44:139–177Google Scholar
  5. Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, LondonGoogle Scholar
  6. Agnihotri R, Altabet MA, Herbert TD, Tierney JE (2008) Subdecadally resolved paleoceanography of the Peru margin during the last two millennia. Geochem Geophys Geosyst 9:Q05013. doi:10.1029/2007GC001744Google Scholar
  7. Amorosi A, Centineo CM, Dinelli E, Lucchini F, Tateo F (2002) Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po Plain. Sediment Geol 151:273–292Google Scholar
  8. Andres MS, Bernasconi SM, McKenzie JA, Röhl U (2003) Southern Ocean deglacial record supports global Younger Dryas. Earth Planet Sci Lett 216:515–525. doi:10.1016/S0012-821X(03)00556-9Google Scholar
  9. Andrews JT, Tedesco K (1992) Detrital carbonate-rich sediments, northwestern Labrador Sea: implications for ice-sheet dynamics and iceberg rafting (Heinrich) events in the North Atlantic. Geology 20:1087–1090Google Scholar
  10. Arrhenius G (1952) Sediment cores from the East Pacific. In: Pettersson H (ed) Reports of the Swedish Deep-Sea Expedition (1947–1948), Elanders Boktryckeri Aktiebolag, GöteborgGoogle Scholar
  11. Arz HW, Pätzold J, Wefer G (1998) Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-glacial marine deposits off Brazil. Quat Res 50:157–166Google Scholar
  12. Arz HW, Pätzold J, Wefer G (1999) Climatic changes during the last deglaciation recorded in sediment cores from the northeastern Brazilian Continental Margin. Geo Mar Lett 19:209–218. doi:10.1007/s003670050111Google Scholar
  13. Arz HW, Gerhardt S, Pätzold J, Röhl U (2001a) Millennial-scale changes of surface- and deep-water flow in the western tropical Atlantic linked to Northern Hemisphere high-latitude climate during the Holocene. Geology 29:239–242. doi:10.1130/0091-7613(2001) 029<0239MSCOSA>20CO;2Google Scholar
  14. Arz HW, Pätzold J, Moammar MO, Röhl U (2001b) Late Quaternary climate records from the Northern Red Sea: results on gravity cores retrieved during the R/V METEOR Cruise M44/3. J King Abdulaziz Univ Mar Sci 12:101–113Google Scholar
  15. Arz HW, Pätzold J, Müller PJ, Moammar MO (2003) Influence of Northern Hemisphere climate and global sea level rise on the restricted Red Sea marine environment during termination I. Paleoceanography 18:1053. doi:10.1029/2002PA000864Google Scholar
  16. Arz HW, Lamy F, Pätzold J (2006) A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea. Quat Res 66:432–441. doi:10.1016/j.yqres.2006.05.006Google Scholar
  17. Backman J, Jakobsson M, Frank M, Sangiorgi F, Brinkhuis H, Stickley C, O’Regan M, Løvlie R, Pälike H, Spofforth D, Gattacecca J, Moran K, King J, Heil C (2008) Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge. Paleoceanography 23:PA1S03. doi:10.1029/2007PA001476Google Scholar
  18. Bahr A, Lamy F, Arz H, Kuhlmann H, Wefer G (2005) Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Mar Geol 214:309–322. doi:10.1016/j.margeo.2004.11.013Google Scholar
  19. Bahr A, Lamy F, Arz HW, Major C, Kwiecien O, Wefer G (2008) Abrupt changes of temperature and water chemistry in the late Pleistocene and early Holocene Black Sea. Geochem Geophys Geosyst 9:Q01004. doi:1029/2007GC001683Google Scholar
  20. Balsalm WL, McCoy FW (1987) Atlantic sediments: glacial/interglacial comparisons. Paleoceanography 2:531–542Google Scholar
  21. Balsam WL, Otto-Bliesner B, Deaton BC (1995) Modern and last glacial maximum eolian sedimentation patterns in the Atlantic Ocean interpreted from sediment iron oxide content. Paleoceanography 10:493–507Google Scholar
  22. Baturin GN, Shevchenko Y, Zavadskaya NN (1987) On the structure and comparison of ore crusts from subsea mountains of the northern Pacific. Okeanologiya 27:624–629Google Scholar
  23. Behling H, Arz HW, Pätzold J, Wefer G (2000) Late Quaternary vegetational and climate dynamics in northeastern Brazil inferences from marine core GEOB 3104-1. Quat Sci Rev 19:981–994. doi:10.1016/S0277-3791(99)00046-3Google Scholar
  24. Bennekom van AJ, Jansen JHF, Van der Gaast SJ, Van Iperen JM, Pieters J (1989) Aluminium-rich opal: an intermediate in the preservation of biogenic silica in the Zaire (Congo) deep-sea fan. Deep Sea Res 36:173–190Google Scholar
  25. Berg S, Wagner B, Cremer H, Leng MJ, Melles M (2010) Late Quaternary environmental and climate history of Rauer Group, East Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 297:201–213. doi:10.1016/j.palaeo.2010.08.002Google Scholar
  26. Bergh van den GD, Boer W, de Haas H, van Weering TjCE, van Wijhe R (2003) Shallow marine tsunami deposits in Teluk Banten (NW Java, Indonesia), generated by the 1883 Krakatau eruption. Mar Geol 197:13–34. doi:10.1016/S0025-3227(03)00088-4Google Scholar
  27. Bergh van den GD, Boer W, Schaapveld MAS, Duc DM, van Weering TjCE (2007) Recent sedimentation and sediment accumulation rates of the Ba Lat prodelta (Red River, Vietnam). J Asian Earth Sci 29:545–557. doi: 10.1016/j.jseaes.2006.03.006Google Scholar
  28. Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Res 51:359–365Google Scholar
  29. Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615Google Scholar
  30. Bishop JKB (1988) The barite-opal-organic carbon association in oceanic particulate matter. Nature 332:341–343Google Scholar
  31. Blanchet CL, Thouveny N, Vidal L, Leduc G, Tachikawa K, Bard E, Beaufort L (2007) Terrigenous input response to glacial/interglacial climatic variations over southern Baja California: a rock magnetic approach. Quat Sci Rev 26:3118–3133. doi:10.1016/j.quascirev.2007.07.008Google Scholar
  32. Blanchet CL, Thouveny N, Vidal L (2009) Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara Basin: implication for paleoenvironmental changes during the past 35 ka. Paleoceanography 24:PA2224. doi:10.1029/2008PA001719Google Scholar
  33. Blossom N (2006) Copper in the ocean environment, American Chemet Corporation. Accessed 23 March 2012
  34. Bond GC, Lotti R (1995) Iceberg discharges into the North Atlantic on millennial timescale during the Last Glaciation. Science 267:1005–1010Google Scholar
  35. Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147Google Scholar
  36. Böning P, Bard E, Rose J (2007) Toward direct, micron-scale XRF elemental maps and quantative profiles of wet marine sediments. Geochem Geophys Geosyst 8:Q05004. doi:10.1029/2006GC001480Google Scholar
  37. Bourget J, Zaragosi S, Garlan T, Gabelotaud I, Guyomard P, Dennielou B, Ellouz-Zimmermann N, Schneider JL, Fan Indien 2006 survey crew (2008) Discovery of a giant deep-sea valley in the Indian Ocean, off eastern Africa: the Tanzania channel. Mar Geol 255:197–185. doi:10.1016/j.margeo.2008.09.002Google Scholar
  38. Bourget J, Zaragosi S, Ellouz-Zimmermann N, Mouchot N, Garlan T, Schneider J-L, Lanfumey V Lallemant S (2011) Turbidite system architecture and sedimentary processes along topographically complex slopes: the Makran convergent margin. Sedimentology 58:376–406. doi:10.1111/j.1365-3091.2010.01168.x)Google Scholar
  39. Bozzano G, Kuhlmann H, Alonso B (2002) Storminess control over African dust input to the Moroccan Atlantic margin (NW Africa) at the time of maxima boreal summer insolation: a record of the last 220 kyr. Palaeogeogr Palaeoclimatol Palaeoecol 183:155–168. doi:10.1016/S0031-0182(01)00466-7Google Scholar
  40. Bramlette MN, Bradley WH (1940) Geology and biology of North Atlantic deep-sea cores between Newfoundland and Ireland. Part 1. Lithology and geologic interpretations. US Geol Surv Prof Pap 196A:1–34Google Scholar
  41. Breier JA, Breier CF, Edmonds HN (2010) Seasonal dynamics of dissolved Ra isotopes in the semi-arid bays of south Texas. Mar Chem 122:39–50. doi:10.1016/j.marchem.2010.08.008Google Scholar
  42. Brendryen J, Haflidason H, Sejrup HP (2010) Norwegian Sea tephrostratigraphy of marine isotope stages 4 and 5: prospects and problems for tephrochronology in the North Atlantic region. Quat Sci Rev 29:847–864. doi:10.1016/j.quascirev.2009.12.004Google Scholar
  43. Brunsack HJ, Gieskes JM (1983) Interstitial water trace-element chemistry of laminated sediments from the Gulf of California, Mexico. Mar Chem 14:89–106Google Scholar
  44. Cage AG, Austin WEN (2010) Marine climate variability during the last millennium: the Loch Sunart record, Scotland, UK. Quat Sci Rev 29:1633–1647. doi:10.1016/j.quascirev.2010.01.014Google Scholar
  45. Caley T, Malaizé B, Zaragosi S, Rossignol L, Bourget J, Eynaud F, Martinez P, Giraudeau J, Charlier K, Ellouz-Zimmerman N (2011) New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth Planet Sci Lett 308:433–444. doi:10.1016/j.epsl.2011.06.019Google Scholar
  46. Calvert SE, Pedersen TF (2007) Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. In: Hillaire-Marcel C, De Vernal A (eds) Proxies in Late Cenozoic Paleoceanography, Dev Mar Geol, Elsevier, pp 567–644Google Scholar
  47. Canfield DE, Berner RA (1987) Dissolution and pyritization of magnetite in anoxic marine sediments. Geochim Cosmochim Acta 51:645–659. doi:10.1016/ 0016-7037(87)90076-7Google Scholar
  48. Cardinal D, Savoye N, Trull TW, Andre L, Kopczynska EE, Dehairs F (2005) Variations of carbon remineralisation in the Southern Ocean illustrated by the Baxs proxy. Deep Sea Res 52:355–370Google Scholar
  49. Carlson AE, Stoner JS, Donnelly JP, Hillaire-Marcel C (2008) Response of the southern Greenland Ice Sheet during the last two deglaciations. Geology 36:359–362. doi: 10.1130/G24519A.1Google Scholar
  50. Cheshire H, Thurow J, Nederbragt AJ (2005) Late Quaternary climate change record from two long sediment cores from Guaymas Basin, Gulf of California. J Quat Sci 20:457–469. doi:10.1002/jqs.944Google Scholar
  51. Chiessi CM, Mulitza S, Pätzold J, Wefer G, Marengo JA (2009) Possible impact of the Atlantic Multidecadal Oscillation on the South American summer monsoon. Geophys Res Lett 36:L21707. doi:10.1029/2009GL039914Google Scholar
  52. Chow TJ, Goldberg ED (1960) On the marine geochemistry of barium. Geochim Cosmochim Acta 20:192–198Google Scholar
  53. Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci 1:875–880. doi:10.1038/ngeo351Google Scholar
  54. Coolen MJL, Saenz JP, Giosan L, Trowbridge NY, Dimitrov P (2009) DNA and lipid molecular stratigraphic records of haptophyte succession in the Black Sea during the Holocene. Earth Planet Sci Lett 284:610–621. doi:10.1016/j.epsl.2009.05.029Google Scholar
  55. Correns CW (1937) Die sedimente des aquatorialen Atlantischen Ozeans II. Geochemie der Sedimente. Wiss Ergeb Dtsch Atl Exped Meteor 1925–1927 3:205–245Google Scholar
  56. Cronan DS, Rothwell G, Croudace I (2010) An ITRAX geochemical study of ferromanganiferous sediments from the Penrhyn Basin, South Pacific Ocean. Mar Georesour Geotechnol 28:207–221. doi:10.1080/1064119X.2010.483001Google Scholar
  57. Croudace IW, Rindby A, Rothwell RG (2006) ITRAX: description and evaluation of a new multi-function X-ray core scanner. In: Rothwell RG (ed) New techniques in sediment core analysis. Geological Society Special Publication 267, pp 51–63Google Scholar
  58. Cushman JA, Henbest LG (1940) Geology and biology of North Atlantic deep-sea cores between Newfoundland and Ireland. Part 2. Foraminifera. US Geol Surv Prof Pap 196A:35–55Google Scholar
  59. Debenay JP, Pages J, Guillou JJ (1994) Transformation of a subtropical river into a hyperhaline estuary: the Casamance River (Senegal)—paleogeographical implications. Palaeogeogr Palaeoclimatol Palaeoecol 107:103–119Google Scholar
  60. Dehairs F, Chesselet R, Jedwab J (1980) Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Planet Sci Lett 49:528–550Google Scholar
  61. Dehairs F, Baeyens W, Goeyens L (1992) Accumulation of suspended baite at mesopelagic depths and export production in the Southern Ocean. Science 254:1332–1335Google Scholar
  62. Dembitsky VM (2002) Bromo‐ and iodo‐containing alkaloids from marine microorganisms and sponges. Russ J Bioorg Chem 28:170–182. doi:10.1023/A:1015748018820Google Scholar
  63. Denis D, Crosta X, Zaragosi S, Romero O, Martin B, Mas V (2006) Seasonal and sub-seasonal climate changes recorded in laminated diatom ooze sediments, Adélie Land, East Antarctica. Holocene 16:1137–1147. doi: 10.1177/0959683606069414Google Scholar
  64. Dickens GR, Fewless T, Thomas E, Bralower TJ (2003) Excess barite accumulation during the Paleocene-Eocene thermal maximum: massive input of dissolved barium from seafloor gas hydrate reservoirs. In: Wing SL et al (ed) Causes and consequences of globally warm climates in the early Paleogene. Special Paper Geological Society of America 369, pp 11–23 (Boulder, CO)Google Scholar
  65. Dickson AJ, Leng MJ, Maslin MA, Röhl U (2010) Oceanic, atmospheric and ice-sheet forcing of South East Atlantic Ocean productivity and South African monsoon intensity during MIS-12 to 10. Quat Sci Rev 29:3936–3947. doi:10.1016/j.quascirev.2010.09.014Google Scholar
  66. Diekmann B, Hofmann J, Henrich R, Fütterer DK, Röhl U, Wei K-Y (2008) Detrital sediment supply in the southern Okinawa Trough and its relation to sea level and Kurishio dynamics during the late Quaternary. Mar Geol 255:83–95. doi:10.1016/j.margeo.2008.08.001Google Scholar
  67. Doh S, King JW, Leinen M (1988) A rock-magnetic study of giant piston core LL44-GPC3 from the central north Pacifc and its paleoceanographic implications. Paleoceanography 3:89–111Google Scholar
  68. Dorschel B, Hebbeln D, Rüggeberg A, Dullo W-C (2007) Carbonate budget of a cold-water coral carbonate mound: propeller mound, porcupine seabight. Int J Earth Sci 96:73–83. doi: 10.1007/s00531-005-0493-0Google Scholar
  69. Dorschel B, Hebbeln D, Rüggeberg A, Dullo W-C, Freiwald A (2005) Growth and erosion of a cold-water coral covered carbonate mound in the Northeast Atlantic during the Late Pleistocene and Holocene. Earth Planet Sci Lett 233:33–44. doi:10.1016/j.epsl.2005.01.035Google Scholar
  70. Dymond J, Collier R (1996) Particulate barium fluxes and their relationships to biological productivity. Deep Sea Res Pt II(43):1283–1308Google Scholar
  71. Eisele M, Hebbeln D, Wienberg C (2008) Growth history of a cold-water coral covered carbonate mound—Galway Mound, Porcupine Seabight, NE Atlantic. Mar Geol 253:160–169. doi:10.1016/j.margeo.2008.05.006Google Scholar
  72. Emsley J (2001) Manganese. Nature’s building blocks: an A-Z Guide to the elements. Oxford University Press, Oxford, pp 249–253Google Scholar
  73. Eynatten von H, Barcelo-Vidal C, Pawlowsky-Glahn V (2003) Composition and discrimination of sandstones: a statistical evaluation of different analytical methods. J Sediment Res 73:47–57Google Scholar
  74. Finney BP, Lyle MW, Heath GR (1988) Sedimentation at MANOP site H (Eastern Equatorial Pacific) over the past 400,000 years: climatically induced redox effects on transition metal cycling. Paleoceanography 3:169–189Google Scholar
  75. Foubert A, Henriet J-P (2009) The top of the record: on-mound and off-mound. Lect Notes Earth Sci 126:167–191. doi:10.1007/978-3-642-00290-8_6Google Scholar
  76. Foucault A, Stanley DJ (1989) Late Quaternary palaeoclimatic oscillations in East Africa recorded by heavy minerals in the Nile delta. Nature 339:44–46Google Scholar
  77. Franke C, Hofmann D, Dobeneck von T (2004) Does lithology influence relative paleointensity records? A statistical analysis on South Atlantic pelagic sediments. Phys Earth Planet Inter 147:285–296. doi:10.1016/j.pepi.2004.07.004Google Scholar
  78. Frenz M, Wynn RB, Georgiopoulou A, Bender VB, Hough G, Masson DG, Talling PJ, Cronin BT (2009) Provenance and pathways of late Quaternary turbidites in the deep-sea Agadir Basin, northwest African margin. Int J Earth Sci 98:721–733. doi:10.1007/s00531-008-0313-4Google Scholar
  79. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090Google Scholar
  80. Funk JA, von Dobeneck T, Reitz A (2004a) Integrated rock magnetic and geochemical quantification of redoxmorphic iron mineral diagenesis in Late Quaternary sediments from the equatorial Atlantic. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the Late Quaternary, Springer, pp 237–260Google Scholar
  81. Funk JA, von Dobeneck T, Wagner T, Kasten S (2004b) Late Quaternary sedimentation and early diagenesis in the equatorial Atlantic Ocean: pattern, trends, and processes deduced from rock magnetic and geochemical records: In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the Late Quaternary, Springer, pp 461–497Google Scholar
  82. Gac JY, Kane A (1986) Le fleuve Sénégal: I. Bilan hydrologique et flux continentaux de matiéres particulaires á l'embouchure. Sci Géol Bull 39:99–130Google Scholar
  83. Galbraith ED, Kienast M, Jaccard SL, Pedersen TF, Brunelle BG, Sigman DM, Kiefer T (2008) Consistent relationship between global climate and surface nitrate utilization in the western subarctic Pacific throughout the last 500 ka. Paleoceanography 23:PA2212. doi:10.1029/2007PA001518Google Scholar
  84. Ganeshram RS, Pedersen TF, Murray JW (1992) The record of organic carbon burial in Holocene and LGM sediments in the oxygen minimum off northwestern Mexico. Trans Am Geophys Union 73:309Google Scholar
  85. Ganeshram RS, Calvert SE, Pedersen TF, Cowie GL (1999) Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NE Mexico: implications for hydrocarbon preservation. Geochim Cosmochim Acta 63:1723–1734Google Scholar
  86. Ganeshram RS, François R, Commeau J, Brown-Leger SL (2003) An experimental investigation of barite formation in seawater. Geochim Cosmochim Acta 67:2599–2605Google Scholar
  87. Gatti E, Rehak E (1984) Semiconductor drift chamber—An application of a novel charge transport scheme. Nucl Instr and Meth 225:608–614Google Scholar
  88. Ge LQ, Lai WC, Lin YC (2005) Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis. X-Ray Spectrom 34:28–34Google Scholar
  89. Gebhardt H, Sarnthein M, Grootes PM, Kiefer T, Kühn H, Schmieder F, Röhl U (2008) Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V. Paleoceanography 23:PA4212. doi:10.1029/2007PA001513Google Scholar
  90. Gil IM, Abrantes F, Hebbeln D (2006) The North Atlantic oscillation forcing through the last 2000 years: spatial variability as revealed by high-resolution marine diatom records from N and SW Europe. Mar Micropaleontol 60:113–129Google Scholar
  91. Goldberg ED (1954) Marine geochemistry I. Chemical scavengers of the sea. J Geol 62:249–265Google Scholar
  92. Goldberg ED, Arrhenius G (1958) Chemistry of Pacific pelagic sediments. Geochem Cosmochim Acta 13:153–212Google Scholar
  93. Gooday AJ, Nott JA (1982) Intracellular barite crystals in two xenophyophores, Aschemonella ramuliformis and Galatheammina sp. (Protozoa, Rhizopoda) with comments on the taxonomy of A. ramuliformis. J Mar Biol Assoc UK 62:595–605Google Scholar
  94. Gribble GW (2000) The natural production of organobromine compounds. Environ Sci Pollut Res Int 7:37–49. doi:10.1065/ espr199910.002Google Scholar
  95. Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297Google Scholar
  96. Grootes PM, Stuiver M, Withe JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554Google Scholar
  97. Grove CA, Nagtegaal R, Zinke J, Scheufen T, Koster B, Kasper S, McCulloch MT, Van den Bergh G, Brummer GJA (2010) River runoff reconstructions from novel spectral luminescence scanning of massive coral skeletons. Coral Reefs 29:579–591. doi:10.1007/s00338-010-0629-yGoogle Scholar
  98. Grützner J, Rebesco MA, Cooper AK, Forsberg CF, Kryc KA, Wefer G (2003) Evidence for orbitally controlled size variations of the East Antarctic Ice Sheet during the late Miocene. Geology 31:777–780. doi:10.1130/G19574.1Google Scholar
  99. Grützner J, Hillenbrand C-D, Rebesco MA (2005) Terrigenous flux and biogenic silica deposition at the Antarctic continental rise during the late Miocene to early Pliocene: implications for ice sheet stability and sea ice coverage. Glob Planet Change 45:131–149. doi:10.1016/j.gloplacha.2004.09.004Google Scholar
  100. Hanebuth TJJ, Henrich R (2009) Recurrent decadal-scale dust events over Holocene western Africa and their control on canyon turbidite activity (Mauritania). Quat Sci Rev 28:261–270. doi:10.1016/j.quascirev.2008.09.024Google Scholar
  101. Hanebuth TJJ, Lantzsch H (2008) A Late Quaternary sedimentary shelf system under hyperarid conditions: unravelling climatic, oceanographic and sea-level controls (Golfe d'Arguin, Mauritania, NW Africa). Mar Geol 256:77–89. doi:10.1016/j.margeo.2008.10.001Google Scholar
  102. Harff J, Endler R, Emelyanov E, Kotov S, Leipe T, Moros M, Olea R, Tomczak M, Witkowski A (2011) Late Quaternary climate variations reflected in Baltic Sea sediments. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea Basin, vol. 3, pp 99–132. (Central and Eastern European Development Studies (CEEDES)). doi:10.1007/978-3-642–17220-5_5Google Scholar
  103. Hascke M (2006) The Eagle III BKA system, a novel sediment core X-ray fluorescence analyser with very high spatial resolution. In: Rothwell RG (ed) New techniques in sediment core analysis, Geological Society Special Publication 267, pp 31–37. doi:10.1144/ GSL.SP.2006.267.01.02Google Scholar
  104. Haschke M, Scholz W, Theis U, Nicolosi J, Scruggs B, Herzceg L (2002) Description of a new micro-X ray spectrometer. J Phys IV 12:6–83. doi:10.1051/jp 4:20020216Google Scholar
  105. Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308Google Scholar
  106. Haug GH, Günther D, Peterson LC, Sigman DM, Hughen KA, Aeschlimann B (2003) Climate and the collapse of Mayan civilisation. Science 299:1731–1735. doi:10.1126/science.1080444Google Scholar
  107. Hebbeln D, Cortés J (2001) Sedimentation in a tropical fjord: Golfo Dulce, Costa Rica. Geo Mar Lett 20:142–148. doi:10.1007/s003670000047Google Scholar
  108. Hebbeln D, Scheurle C, Lamy F (2003) Depositional history of the Helgoland Mud Area, German Bight, North Sea. Geo Mar Lett 23:81–90. doi: 10.1007/s00367-003-0127-0Google Scholar
  109. Hebbeln D, Knudsen K-L, Gyllencreutz R, Kristensen P, Klitgaard-Kristensen D, Backman J, Scheurle C, Jiang H, Gil I, Smelror M, Jones PD, Sejrup HP (2006) Late Holocene coastal hydrographic and climate changes in the eastern North Sea. Holocene 16:987–1001. doi: 10.1177/0959683606hl989rpGoogle Scholar
  110. Helmke JP, Bauch HA, Röhl U, Mazaud A (2005) Changes in sedimentation patterns of the Nordic Seas region across the mid-Pleistocene. Mar Geol 215:107–122. doi:10.1016/j.margeo.2004.12.006Google Scholar
  111. Helmke JP, Bauch HA, Röhl U, Kandiano ES (2008) Uniform climate development between the subtropical and subpolar Northeast Atlantic across marine isotope stage 11. Clim Past Discuss 4:433–457 ( Scholar
  112. Henrich R, Cherubini Y, Meggers H (2010) Climate and sea level induced turbidite activity in a canyon system offshore the hyperarid Western Sahara (Mauritania): the Timiris Canyon. Mar Geol 275:178–198. doi:10.1016/j.margeo.2010.05.011Google Scholar
  113. Hepp DA, Mörz T, Grützner J (2006) Pliocene glacial cyclicity in deep-sea sediment drifts (Antarctic Peninsula Pacific Margin). Palaeogeogr Palaeoclimatol Palaeoecol 231:181–198. doi:10.1016/j.palaeo.2005.07.030Google Scholar
  114. Hepp DA, Mörz T, Hensen C, Frederichs T, Kasten S, Riedinger N, Hay WW (2009) A late Miocene–early Pliocene Antarctic deepwater record of repeated iron reduction events. Mar Geol 266:198–211Google Scholar
  115. Hibbert FD, Austin WEN, Leng MJ, Gatliff RW (2010) British Ice Sheet dynamics inferred from North Atlantic ice-rafted debris records spanning the last 175000 years. J Quat Sci 25:461–482. doi:10.1002/jqs.1331Google Scholar
  116. Hillenbrand C-D, Kuhn G, Frederichs T (2009) Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse? Quat Sci Rev 28:1147–1159. doi: 10.1016/j.quascirev.2008.12.010Google Scholar
  117. Hoang van L, Clift PD, Schwab AM, Huuse M, Nguyen DA, Zhen S (2010) Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan basins, South China Sea. Geol Soc Spec Publ 342:219–244. doi:10.1144/ SP342.13Google Scholar
  118. Hodell DA, Channell JET, Curtis JH, Romero OE, Röhl U (2008) Onset of ‘Hudson Strait’ Heinrich events in the Eastern North Atlantic at the end of the Middle Pleistocene transition (~ 640 ka)? Paleoceanography 23:PA4218. doi:10.1029/2008PA001591Google Scholar
  119. Hodell DA, Evans HF, Channell JET, Curtis JH (2010) Phase relationships of North Atlantic ice-rafted debris and surface-deep climate proxies during the last glacial period. Quat Sci Rev 29:3875–3886. doi:10.1016/j.quascirev.2010.09.006Google Scholar
  120. Hofmann DI, Fabian K (2007) Rock magnetic properties and relative paleointensity stack for the last 300 ka based on a stratigraphic network from the subtropical and subantarctic South Atlantic. Earth Planet Sci Lett 260:297–312. doi:10.1016/j.epsl.2007.05.042Google Scholar
  121. Hofmann DI, Fabian K, Schmieder F, Donner B, Bleil U (2005) A stratigraphic network across the Subtropical Front in the central South Atlantic: multi-parameter correlation of magnetic susceptibility, density, X-ray fluorescence and δ 18O records. Earth Planet Sci Lett 240:694–709. doi:10.1016/j.epsl.2005.09.048Google Scholar
  122. Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438:483–487. doi:10.1038/nature04123Google Scholar
  123. Holbourn A, Kuhnt W, Schulz M, Flores J-A, Andersen N (2007) Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion. Earth Planet Sci Lett 261:534–550. doi:10.1016/j.epsl.2007.07.026Google Scholar
  124. Holzwarth U, Meggers H, Esper O, Kuhlmann H, Freudenthal T, Hensen C, Zonneveld KAF (2010) NW African climate variations during the last 47,000 years: evidence from organic-walled dinoflagellate cysts. Palaeogeogr Palaeoclimatol Palaeoecol 291:443–455. doi:10.1016/j.palaeo.2010.03.013Google Scholar
  125. Huerta-Diaz MA, Morse JW (1992) Pyritisation of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702Google Scholar
  126. Ingram WC, Meyers SR, Brunner CA, Martens CS (2010) Late Pleistocene–Holocene sedimentation surrounding an active seafloor gas-hydrate and cold-seep field on the Northern Gulf of Mexico slope. Mar Geol 278:45–53. doi:10.1016/j.margeo.2010.09.002Google Scholar
  127. Itambi AC, von Dobeneck T, Adegbie AT (2010) Millennial-scale precipitation changes over Central Africa during the late Quaternary and Holocene: evidence in sediments from the Gulf of Guinea. J Quat Sci 25:267–279. doi:10.1002/jqs.1306Google Scholar
  128. Itambi AC, von Dobeneck T, Mulitza S, Bickert T, Heslop D (2009) Millennial-scale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: evidence in marine sediments from offshore Senegal. Paleoceanography 24:PA1205. doi:10.1029/2007PA001570Google Scholar
  129. Ivanochko TS, Ganeshram RS, Brummer GJA, Ganssen G, Jung SJA, Moreton SG, Kroon D (2005) Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth Planet Sci Lett 235:302–314Google Scholar
  130. Ivanov MV (1981) The global biogeochemical sulphur Cycle. In: Likens GE (ed) Some perspectives of the major biogeochemical cycles SCOPE, pp 61–78Google Scholar
  131. Jaccard SL, Haug GH, Sigman DM, Pedersen TF, Thierstein HR, Röhl U (2005) Glacial/interglacial changes in Subarctic North Pacific stratification. Science 308:1003–1006. doi:10.1126/science.1108696Google Scholar
  132. Jaccard SL, Galbraith ED, Sigman DM, Haug GH, Francois R, Pedersen TF, Dulski P, Thierstein HR (2009) Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet Sci Lett 277:156–165. doi: 10.1016/j.epsl.2008.10.017Google Scholar
  133. Jaccard SL, Galbraith ED, Sigman DM, Haug GH (2010) A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800 kyrs. Quat Sci Rev 29:206–212. doi:10.1016/j.quascirev.2009.10.007Google Scholar
  134. Jaeschke A, Rühlemann C, Arz H, Heil G, Lohmann G (2007) Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period. Paleoceanography 22:PA4206. doi:10.1029/2006PA001391Google Scholar
  135. Jahn B, Donner B, Müller PJ, Röhl U, Schneider R, Wefer G (2003) Pleistocene variations in dust input and marine productivity in the northern Benguela Current: evidence of evolution of global glacial-interglacial cycles. Palaeogeogr Palaeoclimatol Palaeoecol 193:515–533. doi:10.1016/S0031-0182(03)00264-5Google Scholar
  136. Jahn B, Schneider RR, Mueller PJ, Donner B, Röhl U (2005) Response of tropical African and East Atlantic climates to orbital forcing over the last 1.7 Ma. In Head MJ, Gibbard PL (eds) Early-middle Pleistocene transitions: the land ocean evidence, Geological Society Special Publication 247, pp 65–84. doi:10.1144/GSL.SP.2005.247.01.04Google Scholar
  137. Jakobsson M, Løvlie R, Al-Hanbali H, Arnold E, Backman J, Mörth M (2000) Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28:23–26Google Scholar
  138. Jansen JHF, Dupont L (2001) Data report: a revised composite depth record for Site 1077 based on magnetic susceptibility and XRF (CORTEX) data. In: Wefer G, Berger WH, Richter C (eds) Proc Ocean Drill Program Part B Sci. Results 175:1–10. doi:10.2973/ Scholar
  139. Jansen JHF, De Lange GJ, Van Bennekom AJ et al (1990) Paleoceanography and geochemistry of the Angola Basin (South Atlantic Ocean). Cruise Report, RV Tyro, 30 September-19 November 1989. Texel, Netherlands Institute for Sea ResearchGoogle Scholar
  140. Jansen JHF, Van der Gaast SJ, Koster B, Vaars A (1992) CORTEX, an XRF scanner for chemical analyses of sediment cores. GEOMAR Rep/Ber Rep Geol-Paläontol Inst Univ Kiel 15/57:155Google Scholar
  141. Jansen JHF, Ufkes E, Schneider RR (1996) Late Quaternary movements of the Angola-Benguela Front, SE Atlantic, and implications for advection in the equatorial ocean. In: Wefer G, Berger WH, Siedler G, Webb D (eds) The South Atlantic: present and past circulation. Springer, Berlin, pp 363–410Google Scholar
  142. Jansen JHF, Van der Gaast SJ, Koster B, Vaars A (1998) CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Mar Geol 151:143–153Google Scholar
  143. Jenkins R (1988) X-ray fluorescence spectrometry. WileyGoogle Scholar
  144. Jenkins R, De Vries JL (1970) Practical X-ray spectrometry. Macmillan, LondonGoogle Scholar
  145. Jiménez-Espejo FJ, Martínez-Ruiz F, Finlayson C, Paytan A, Sakamoto T, Ortega-Huertas M, Finlayson G, Iijima K, Gallego-Torres D, Fa D (2007a) Climate forcing and Neanderthal extinction in Southern Iberia: insights from a multiproxy marine record. Quat Sci Rev 26:836–852. doi:10.1016/j.quascirev.2006.12.013Google Scholar
  146. Jimenez-Espejo FJ, Martinez-Ruiz F, Sakamoto T, Iijima K, Gallego-Torres D, Harada N (2007b) Paleoenvironmental changes in the western Mediterranean since the last glacial maximum: High resolution multiproxy record from the Algero–Balearic Basin. Palaeogeogr Palaeoclimatol Palaeoecol 246:292–306. doi:10.1016/j.palaeo.2006.10.005Google Scholar
  147. Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313Google Scholar
  148. Jorry SJ, Jégou I, Emmanuel L, Jacinto RS, Savoye B (2011) Turbiditic levee deposition in response to climate changes: the Var Sedimentary Ridge (Ligurian Sea). Mar Geol 279:148–161. doi:10.1016/j.margeo.2010.10.021Google Scholar
  149. Jullien E, Grousset F, Malaizé B, Duprat J, Sanchez-Goni MF, Eynaud F, Charlier K, Schneider R, Bory A, Bout V, Flores JA (2007) Low-latitude ‘dusty events’ vs. high-latitude ‘icy Heinrich events’. Quat Res 68:379–386. doi:10.1016/j.yqres.2007.07.007Google Scholar
  150. Kaars van der S, Bergh van den GD (2004) Anthropogenic changes in the landscape of west Java (Indonesia) during historic times, inferred from a sediment and pollen record from Teluk Banten. J Quat Sci 19:229–239. doi:10.1002/jqs.804Google Scholar
  151. Kaiser J, Lamy F, Arz HW, Hebbeln D (2007) Dynamics of the millennial-scale sea surface temperature and Patagonian Ice Sheet fluctuations in southern Chile during the last 70 kyr (ODP Site 1233). Quat Int 161:77–89. doi:10.1016/j.quaint.2006.10.024Google Scholar
  152. Karlin R, Lyle M, Heath GR (1987) Authigenic magnetite formation in sub-oxic marine sediments. Nature 326:490–493. doi:10.1038/326490a0Google Scholar
  153. Kattan Z, Gac JY, Probst JL (1987) Suspended sediment load and mechanical erosion in the Senegal Basin—estimation of the surface runoff concentration and relative contributions of channel and slope erosion. J Hydrol 92:59–76Google Scholar
  154. Kelly DC, Nielsen TMJ, McCarren HK, Zachos JC, Röhl U (2010) Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: implications for carbon cycling during the Paleocene–Eocene thermal maximum. Palaeogeogr Palaeoclimatol Palaeoecol 293:30–40. doi:10.1016/j.palaeo.2010.04.027Google Scholar
  155. Kent DV (1982) Apparent correlation of paleomagnetic intensity and climatic records in deep-sea sediments. Nature 299:538–539Google Scholar
  156. Kido Y, Koshikawa T, Tada R (2006) Rapid and quantitative major element analysis method for wet fine-grained sediments using an XRF microscanner. Quat Res 229:209–225Google Scholar
  157. Kim S-Y, Scourse J, Marret F, Lim D-I (2010) A 26,000-year integrated record of marine and terrestrial environmental change off Gabon, west equatorial Africa. Palaeogeogr Palaeoclimatol Palaeoecol 297:428–438. doi:10.1016/j.palaeo.2010.08.026Google Scholar
  158. Kinsman DJJ (1969) Interpretation of Sr2 + concentrations in carbonate minerals and rocks. J Sediment Petrol 39:486–507Google Scholar
  159. Kissel C, Laj C, Kienast M, Bolliet T, Holbourn A, Hill P, Kuhnt W, Braconnot P (2010) Monsoon variability and deep oceanic circulation in the western equatorial Pacific over the last climatic cycle: insights from sedimentary magnetic properties and sortable silt. Paleoceanography 25:PA3215. doi:10.1029/2010PA001980Google Scholar
  160. Kleiven HF, Kissel C, Laj C, Ninnemann US, Richter TO, Cortijo E (2007) Reduced North Atlantic Deep Water coeval with the Glacial Lake Agassiz fresh water outburst. Science 319:60–64. doi:10.1126/science.1148924Google Scholar
  161. Klöcker R, Henrich R (2006) Recent and Late Quaternary pteropod preservation on the Pakistan shelf and continental slope. Mar Geol 231:103–111Google Scholar
  162. Klump J, Hebbeln D, Wefer G (2000) The impact of sediment provenance on barium-based productivity estimates. Mar Geol 169:259–271Google Scholar
  163. Konfirst MA, Kuhn G, Monien D, Scherer RP (2011) Correlation of Early Pliocene diatomite to low amplitude Milankovitch cycles in the ANDRILL AND-1B drill core. Mar Micropaleontol 80:114–124. doi:10.1016/j.marmicro.2011.06.005Google Scholar
  164. Krastel S, Wynn RB, Hanebuth TJJ, Henrich R, Holz C, Meggers H, Kuhlmann H, Georgiopoulou A, Schulz HD (2006) Mapping of seabed morphology and shallow sediment structure of the Mauritania continental margin, Northwest Africa: some implications for geohazard potential. Norw J Geol 86:163–176Google Scholar
  165. Kreiser AM, Appleby PG, Natkanski J, Rippey B, Battarbee RW (1990) Afforestation and Lake acidification—a comparison of 4 sites in Scotland. Philos Trans R Soc London Ser B 327:377–383Google Scholar
  166. Krinsley D, Bieri R (1959) Changes in the chemical composition of pteropod shells after deposition on the sea floor. J Paleontol 33:682–684Google Scholar
  167. Kuhlmann H, Freudenthal T, Helmke P, Meggers H (2004a) Reconstruction of paleoceanography off NW Africa for the last 40,000 years: influence of local and regional factors on sediment accumulation. Mar Geol 207:209–234. doi:10.1016/j.margeo.2004.03.017Google Scholar
  168. Kuhlmann H, Meggers H, Freudenthal T, Wefer G (2004b) The transition of the monsoonal and the N Atlantic climate system off NW Africa during the Holocene. Geophys Res Lett 31:L22204. doi:10.1029/2004GL021267Google Scholar
  169. Kuijpers A, Troelstra SR, Prins MA, Linthout K, Akhmetzhanov A, Bouryak S, Bachmann MF, Lassen S, Rasmussen S, Jensen JB (2003) Late Quaternary sedimentary processes and ocean circulation changes at the Southeast Greenland margin. Mar Geol 195:109–129. doi:10.1016/S0025-3227(02)00684-9Google Scholar
  170. Kujau A, Nürnberg D, Zielhofer C, Bahr A, Röhl U (2010) Mississippi River discharge over the last ~ 560,000 years—indications from X-ray fluorescence core-scanning. Palaeogeogr Palaeoclimatol Palaeoecol 298:311–318. doi:10.1016/j.palaeo.2010.10.005Google Scholar
  171. Kullenberg B (1947) The piston core sampler. Sven Hydrogr Biol Rommissionens Skr Tredje Ser Hydrogr 1(2):1–46Google Scholar
  172. Kwiecien O, Arz HW, Lamy F, Wulf S, Bahr A, Röhl U, Haug GH (2008) Estimated reservoir ages of the Black Sea since the last Glacial. Radiocarbon 50:99–118Google Scholar
  173. Kwiecien O, Arz HW, Lamy F, Plessen B, Bahr A, Haug GH (2009) North Atlantic control on precipitation pattern in the eastern Mediterranean/Black Sea region during the last glacial. Quat Res 71:375–384. doi:10.1016/j.yqres.2008.12.004Google Scholar
  174. Lamy F, Hebbeln D, Röhl U, Wefer G (2001) Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth Planet Sci Lett 185:369–382. doi:10.1016/S0012–821X(00)00381–2Google Scholar
  175. Lamy F, Kaiser J, Ninnemann U, Hebbeln D, Arz HW, Stoner J (2004) Antarctic timing of surface water changes off Chile and Patagonian ice-sheet response. Science 304:1959–1962. doi:10.1126/science.1097863Google Scholar
  176. Land van der C, Mienis F, Haas de H, Frank N, Swennen R, Van Weering TCE (2010) Diagenetic processes in carbonate mound sediments at the south-west Rockall Trough margin. Sedimentology 57:912–931. doi:10.1111/j.1365–3091.2009.01125.xGoogle Scholar
  177. Land van der C, Mienis F, Haas de H, Stiger de HC, Swennen R, Reijmer JJG, van Weering TCE (2011) Paleo-redox fronts and their formation in carbonate mound sediments from the Rockall Trough. Mar Geol 284:86–95. doi:10.1016/j.margeo.2011.03.010Google Scholar
  178. Lebreiro SM, Voelker AHL, Vizcaino A, Abrantes FG, Alt-Epping U, Jung S, Thouveny N, Gràcia E (2009) Sediment instability on the Portuguese continental margin under abrupt glacial climate changes (last 60 kyr). Quat Sci Rev 28:3211–3223. doi:10.1016/j.quascirev.2009.08.007Google Scholar
  179. Lesack LFW, Hecky RE, Melack JM (1984) Transport of carbon, nitrogen, phosphorus and major solutes in the Gambia River, West Africa. Limnol Oceanogr 29:816–830Google Scholar
  180. Leslie BW, Hammond DE, Berelson WM, Lund SP (1990) Diagenesis in anoxic sediments from the California borderland and its influence on iron, sulfur and magnetite behavior. J Geophys Res 95:4453–4470Google Scholar
  181. Lippold J, Grützner J, Winter D, Lahaye Y, Mangini A, Christl M (2009) Does sedimentary 231 Pa/230Th from the Bermuda Rise monitor past Atlantic Meridional Overturning Circulation? Geophys Res Lett 36:L12601. doi:10.1029/2009GL038068Google Scholar
  182. Liu LW, Chen J, Chen Y et al (2002) Variation of Zr/Rb ratios on the Loess Plateau of central China during the last 130 ka and its implications for winter monsoon. Chin Sci Bull 47:1298–1302Google Scholar
  183. López-Martínez C, Grimalt JO, Hoogakker B, Grützner J, Vautravers MJ, McCave IN (2006) Abrupt wind regime changes in the North Atlantic Ocean during the past 30000–60000 years. Paleoceanography 21:PA4215. doi:10.1029/2006PA001275Google Scholar
  184. Löwemark L, Jakobsson M, Mörth M, Backman J (2008) Arctic Ocean manganese contents and sediment colour cycles. Polar Res 27:105–113. doi:10.1111/j.1751-8369.2008.00055.xGoogle Scholar
  185. MacLeod KG, Huber BT, Pletsch T, Röhl U, Kucera M (2001) Maastrichtian foraminiferal and paleoceanographic changes on Milankovitch time scales. Paleoceanogr 16:133–154. doi:10.1029/2000PA000514Google Scholar
  186. Malcolm SJ, Price NB (1984) The behaviour of iodine and bromine in estuarine surface sediments. Mar Chem 15:263–271Google Scholar
  187. Marsh R, Mills RA, Green DRH, Salter I, Taylor S (2007) Controls on sediment geochemistry in the Crozet region. Deep Sea Res Part II 54:2260–2274. doi:10.1016/j.dsr2.2007.06.004Google Scholar
  188. Mayer LM, Schick LL, Allison MA, Ruttenberg KC, Bentley SJ (2007) Marine vs. terrigenous matter in Louisiana coastal sediments: the uses of bromine:organic carbon ratios. Mar Chem 107:244–254. doi:10.1016/j.marchem.2007.07.007Google Scholar
  189. McGregor HV, Dupont L, Stuut J-BW, Kuhlmann H (2009) Vegetation change, goats, and religion: a 2000-year history of land use in southern Morocco. Quat Sci Rev 28:1434–1448. doi:10.1016/j.quascirev.2009.02.012Google Scholar
  190. McHugh CMG, Gurung D, Giosan L, Ryan WBF, Mart Y, Sancar U, Burckle L, Cagatay MN (2008) The last reconnection of the Marmara Sea (Turkey) to the World Ocean: A paleoceanographic and paleoclimatic perspective. Mar Geol 255:64–82. doi:10.1016/j.margeo.2008.07.005Google Scholar
  191. McManus J, Berelson WM, Klinkhammer GP, Johnson KS, Coale KH, Anderson RF, Kumar N, Burdige DJ, Hammond DE, Brumsack HJ, McCorkle DC, Rushdi A (1998) Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochim et Cosmochim Acta 62:3453–3473Google Scholar
  192. Medina-Elizalde M, Rohling EJ (2012) Collapse of Classic Maya civilization related to modest reduction in precipitation. Science 335:956–959Google Scholar
  193. Mohtadi M, Romero OE, Kaiser J, Hebbeln D (2007) Cooling of the southern high latitudes during the medieval period and its effect on ENSO. Quat Sci Rev 26:1055–1066. doi:10.1016/j.quascirev.2006.12.008Google Scholar
  194. Moldenhauer K-M, Zielhofer C, Faust D (2008) Heavy metals as indicators for Holocene sediment provenance in a semi-arid Mediterranean catchment in northern Tunisia. Quat Int 189:129–134Google Scholar
  195. Møller HS, Jensen KG, Kuijpers A, Aagaard-Sørensen S, Seidenkrantz M-S, Prins M, Endler R, Mikkelsen N (2006) Late Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record. Holocene 16:685–695. doi: 10.1191/0959683606hl963rpGoogle Scholar
  196. Monien D, Kuhn G, von Eynatten H, Talarico FM (2010) Geochemical provenance analysis of fine-grained sediment revealing Late Miocene to recent paleo environmental changes in the Western Ross Sea, Antarctica. Glob Planet Change. doi:10.1016/j.gloplacha.2010.05.001Google Scholar
  197. Montero-Serrano JC, Bout-Roumazeilles V, Sionneau T, Tribovillard N, Bory A, Flower BP, Riboulleau A, Martinez P, Billy I (2010) Changes in precipitation regimes over North America during the Holocene as recorded by mineralogy and geochemistry of Gulf of Mexico sediments. Glob Planet Change 74:132–143. doi:10.1016/j.gloplacha.2010.09.004Google Scholar
  198. Moran SB, Moore RM (1992) Kinetics of the removal of dissolved aluminium by diatoms in seawater: a comparison with thorium. Geochim Cosmochim Acta 56:3365–3374Google Scholar
  199. Moreno A, Nave S, Kuhlmann H, Canals M, Targarona J, Freudenthal T, Abrantes F (2002) Productivity response in the North Canary Basin to climate changes during the last 250000 years: a multi-proxy approach. Earth Planet Sci Lett 196:147–159Google Scholar
  200. Moreno T, Querol X, Castillo S, Alastuey A, Cuevas E, Herrmann L, Mounkaila M, Elvira J, Gibbons W (2006) Geochemical variations in aeolian mineral particles from the Sahara–Sahel dust corridor. Chemosphere 65:261–270Google Scholar
  201. Moseley HGJ (1913/1914) High frequency spectra of the elements. Philos Mag 26:1024–1034 (27:703–713)Google Scholar
  202. Mulitza S, Prange M, Stuut J-B, Zabel M, von Dobeneck T, Itambi AC, Nizou J, Schulz M, Wefer G (2008) Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography 23:PA4206. doi:10.1029/2008PA001637Google Scholar
  203. Müller M, Handley KM, Lloyd J, Pancost RD, Mills RA (2010) Biogeochemical controls on microbial diversity in seafloor sulphidic sediments. Geobiology 8:309–326. doi:10.1111/j.1472-4669.2010.00242.xGoogle Scholar
  204. Nizou J, Hanebuth TJJ, Heslop D, Schwenk T, Palamenghi L, Stuut J-B, Henrich R (2010) The Senegal River mud belt: A high-resolution archive of paleoclimatic change and coastal evolution. Mar Geol 278:150–164. doi:10.1016/j.margeo.2010.10.002Google Scholar
  205. Nizou J, Hanebuth TJJ, Vogt C (2011) Deciphering signals of late Holocene fluvial and aeolian supply from a shelf sediment depocentre off Senegal (north-west Africa). J Quat Sci 26:411–421. doi:10.1002/jqs.1467Google Scholar
  206. Nørgaard-Pedersen N, Austin WEN, Howe JA, Shimmield T (2006) The Holocene record of Loch Etive, western Scotland: influence of catchment and relative sea level changes. Mar Geol 228:55–71. doi:10.1016/j.margeo.2006.01.001Google Scholar
  207. Norris RD, Röhl U (1999) Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature 401:775–778. doi:10.1038/44545Google Scholar
  208. O’Regan M, John K St, Moran K, Backman J, King J, Haley BA, Jakobsson M, Frank M, Röhl U (2010) Plio-Pleistocene trends in ice rafted debris on the Lomonosov Ridge. Quat Int 219:168–176. doi:10.1016/j.quaint.2009.08.010Google Scholar
  209. Os van BJH, Middelburg JJ, De Lange GJ (1991) Possible diagenetic mobilisation of barium in sapropelic sediment from the eastern Mediterranenan. Mar Geol 100:125–136.Google Scholar
  210. Pälike H, Shackleton NJ, Röhl U (2001) Astronomical forcing in late Eocene sediments. Earth Planet Sci Lett 193:589–602. doi:10.1016/S0012–821X(01)00501–5Google Scholar
  211. Passier HF, Middelburg JJ, De Lange GJ, Bottcher ME (1999) Modes of sapropel formation in the eastern Mediterranean: some constraints based on pyrite properties. Mar Geol 153:199–219Google Scholar
  212. Payne R, Blackford J, van der Plicht J (2008) Using cryptotephras to extend regional tephrochronologies: an example from southeast Alaska and implications for hazard assessment. Quat Res 69:42–55Google Scholar
  213. Paytan A, Kastner M (1996) Benthic Ba fluxes in the central equatorial Pacific: implications for the oceanic Ba cycle. Earth Planet Sci Lett 142:439–450Google Scholar
  214. Peck VL, Hall IR, Zahn R, Grousset F, Hemming SR, Scourse JD (2007) The relationship of Heinrich events and their European precursors over the past 60 ka BP: a multi-proxy ice-rafted debris provenance study in the North East Atlantic. Quat Sci Rev 26:862–875. doi:10.1016/j.quascirev.2006.12.002Google Scholar
  215. Peterson LC, Haug GH, Hughen KA, Röhl U (2000) Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290:1947–1951. doi:10.1126/science.290.5498.1947Google Scholar
  216. Peterson ML, Carpenter R (1986) Arsenic distributions in pore waters and sediments of Puget Sound, Lake Washington, the Washington coast and Saanich Inlet, BC. Geochim Cosmochim Acta 50:353–369Google Scholar
  217. Phleger FB (1947) Foraminifera of three submarine cores from the Tyrrhenian Sea. Oceanog Inst Göteborg Meddel 13:1–19Google Scholar
  218. Phleger FB, Parker FL, Pierson JF (1953) North Atlantic foraminifera. Rep Swed Deep-Sea Exped 1947–1948 VIII Sediment cores from the North Atlantic Ocean 1. Elanders Boktryckeri Aktiebolag, Göteborg, pp 122Google Scholar
  219. Pierau R, Hanebuth TJJ, Krastel S, Henrich R (2010) Late Quaternary climatic events and sea-level changes recorded by turbidite activity, Dakar Canyon, NW Africa. Quat Res 73:385–392. doi:10.1016/j.yqres.2009.07.010Google Scholar
  220. Pierau R, Henrich R, Preiß-Daimler I, Krastel S, Geersen J (2011) Sediment transport and turbidite architecture in the submarine Dakar Canyon off Senegal, NW Africa. J Afr Earth Sci 60:196–208. doi:10.1016/j.jafrearsci.2011.02.010Google Scholar
  221. Pirlet H, Wehrmann LM, Brunner B, Frank N, Dewanckele J, Rooij Van D, Foubert A, Swennen R, Naudts L, Boone M, Cnudde V, Henriet J-P (2010) Diagenetic formation of gypsum and dolomite in a cold-water coral mound in the Porcupine Seabight, off Ireland. Sedimentology 57:786–805. doi:10.1111/j.1365-3091.2009.01119.xGoogle Scholar
  222. Piva A, Asioli A, Schneider RR, Trincardi F, Andersen N, Colmenero-Hidalgo E, Dennielou B, Flores J-A, Vigliotti L (2008) Climatic cycles as expressed in sediments of the PROMESS1 borehole PRAD1-2, central Adriatic, for the last 370 ka: 1. Integrated stratigraphy. Geochem Geophys Geosyst 9:Q01R01. doi:10.1029/2007GC001713Google Scholar
  223. Pourmand A, Marcantonio F, Schulz H (2004) Variations in productivity and eolian fluxes in the northeastern Arabian Sea during the past 110 ka. Earth Planet Sci Lett 221:39–54.Google Scholar
  224. Potts PJ (1987) A handbook of silicate rock analysis. Blackie, GlasgowGoogle Scholar
  225. Prins MA, Postma G, Weltje GJ (2000) Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Mar Geol 169:351–371. doi:10.1016/S0025-3227(00)00087-6Google Scholar
  226. Prins MA, Troelstra SR, Kruk RW, Borg van der K, de Jong AFM, Weltje GJ (2001) The late Quaternary sedimentary record of Reykjanes Ridge, North Atlantic. Radiocarbon 43:939–947Google Scholar
  227. Puchelt H (1969–1978) Barium: abundance in rock-forming minerals. In: Wedepohl KH, Correns CW, Shaw DM, Turekian KK, Zedmann J (eds) Handbook of Geochemistry. Springer, Berlin, pp D1–D18Google Scholar
  228. Radczewski OE (1939) Eolian deposits in marine sediments. In: Trask PD (ed), Recent marine sediments. AAPG Tulsa Oklahoma, pp 496–502Google Scholar
  229. Rebolledo L, Sepúlveda J, Lange CB, Pantoja S, Bertrand S, Hughen K, Figueroa D (2008) Late Holocene marine productivity changes in Northern Patagonia-Chile inferred from a multi-proxy analysis of Jacaf Channel sediments. Estuarine Coastal Shelf Sci 80:314–322. doi:10.1016/j.ecss.2008.08.016Google Scholar
  230. Ren J, Jiang H, Seidenkrantz M-S, Kuijpers A (2009) A diatom-based reconstruction of Early Holocene hydrographic and climatic change in a southwest Greenland fjord. Mar Micropaleontol 70:166–176. doi:10.1016/j.marmicro.2008.12.003Google Scholar
  231. Revel M, Ducassou E, Grousset FE, Bernasconi SM, Migeon S, Revillon S, Mascle J, Murat A, Zaragosi S, Bosch D (2010) 100,000 years of African monsoon variability recorded in sediments of the Nile margin. Quat Sci Rev 29:1342–1362. doi:10.1016/j.quascirev.2010.02.006Google Scholar
  232. Rex RW, Goldberg ED (1958) Quartz content of pelagic sediments of the Pacific Ocean. Tellus 19:153–159Google Scholar
  233. Rey D, Rubio B, Mohamed K, Vilas F, Alonso B, Ercilla G, Rivas T (2008) Detrital and early diagenetic processes in Late Pleistocene and Holocene sediments from the SW Galicia Bank inferred from high-resolution enviromagnetic and geochemical records. Mar Geol 249:64–92.Google Scholar
  234. Richter TO, Lassen S, van Weering TCE, De Haas H (2001) Magnetic susceptibility patterns and provenance of ice-rafted material at Feni Drift, Rockall Trough: implications for the history of the British-Irish ice sheet. Mar Geol 173:37–54. doi:10.1016/S0025-3227(00)00165–1Google Scholar
  235. Richter TO, Van der Gaast S, Koster B, Vaars A, Gieles R, de Stigter HC, de Haas H, van Weering TCE (2006) The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. In: Rothwell RG (ed) New techniques in sediment core analysis, Geol Soc Spec Publ 267, pp 39–50. doi:10.1144/ GSL.SP.2006.267.01.03Google Scholar
  236. Rieder N, Ott HA, Pfundstein P, Schoch R (1982) X-ray microanalysis of the mineral content of some protozoa. J Protozool 29:15–18Google Scholar
  237. Rincón‐Martínez D, Lamy F, Contreras S, Leduc G, Bard E, Saukel C, Blanz T, Mackensen A Tiedemann R (2010) More humid interglacials in Ecuador during the past 500 kyr linked to latitudinal shifts of the equatorial front and the Intertropical Convergence Zone in the eastern tropical Pacific. Paleoceanography 25:PA2210. doi:10.1029/2009PA001868Google Scholar
  238. Risebrobakken B, Balbon E, Dokken T, Jansen E, Kissel C, Labeyrie L, Richter T, Senneset L (2006) The penultimate deglaciation: high-resolution paleoceanographic evidence from a north-south transect along the eastern Nordic Seas. Earth Planet Sci Lett 241:505–516. doi:10.1016/j.epsl.2005.11.032Google Scholar
  239. Rogerson M, Rohling EJ, Weaver PPE (2006a) Promotion of meridional overturning by Mediterranean-derived salt during the last deglaciation. Paleoceanography 21:PA4101. doi:10.1029/2006PA001306Google Scholar
  240. Rogerson M, Weaver PPE, Rohling EJ, Lourens LJ, Murray JW, Hayes A (2006b) Colour logging as a tool in high-resolution palaeoceanography. In: Rothwell RG (ed) New techniques in sediment core analysis. Geol Soc Spec Publ 267:99–112. doi:10.1144/ GSL.SP.2006.267.01.07Google Scholar
  241. Röhl U, Abrams LJ (2000) High-resolution, downhole and non-destructive core measurements from Sites 999 and 1001 in the Caribbean Sea: application to the Late Paleocene Thermal Maximum. Proc Ocean Drill Program Part B Sci Results 165:191–203. doi:10.2973/ Scholar
  242. Röhl U, Bralower TJ, Norris RD, Wefer G (2000) New chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28:927–930. doi:10.1130/0091-7613(2000)28<927NCFTLP>2.0.CO;2Google Scholar
  243. Röhl U, Ogg JG, Geib TL, Wefer G (2001) Astronomical calibration of the Danian time scale. In: Norris RD, Kroon D, Klaus A (eds) Western North Atlantic Paleogene and Cretaceous Paleoceanography. Geol Soc Spec Publ 183:163–183. doi: 10.1144/ GSL.SP.2001.183.01.09Google Scholar
  244. Röhl U, Norris RD, Ogg JG (2003) Cyclostratigraphy of upper Paleocene and late Eocene sediments at Blake Nose Site 1051 (western North Atlantic). In: Gingerich P, Schmitz B, Thomas E, Wing S (eds) Causes and Consequences of Globally Warm Climates in the Early Paleogene, Geol Soc of Am (GSA) Spec Pap Ser 369:567–588. doi:10.1130/0–8137-2369-8.567Google Scholar
  245. Röhl U, Brinkhuis H, Fuller M (2004) On the search for the Paleocene/Eocene boundary in the Southern Ocean: exploring ODP Leg 189 Holes 1171D and 1172D. In: Exon NF, Malone M, Kennett JP (eds) The Cenozoic Southern Ocean and Climate Change between Australia and Antarctica. Am Geophys Union Geophys Monogr Ser 151:113–126Google Scholar
  246. Röhl U, Westerhold T, Bralower TJ, Zachos JC (2007) On the duration of the Paleocene-Eocene Thermal Maximum (PETM). Geochem Geophys Geosyst 8:Q12002. doi:10.1029/2007GC001784Google Scholar
  247. Rohling EJ, Grant K, Hemleben C, Kucera M, Roberts AP, Schmeltzer I, Schulz H, Siccha M, Siddall M, Trommer G (2008) New constraints on the timing and amplitude of sea level fluctuations during early to middle Marine Isotope Stage 3. Paleoceanography 23:PA3219. doi:10.1029/2008PA001617Google Scholar
  248. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Pearson Harlow Longman, NJGoogle Scholar
  249. Romero OE, Kim J-H, Donner B (2008) Submillennial-to-millennial variability of diatom production off Mauritania, NW Africa, during the last glacial cycle. Paleoceanography 23:PA3218. doi:10.1029/2008PA001601Google Scholar
  250. Rooij van D, Blamart D, De Mol L, Mienis F, Pirlet H, Wehrmann LM, Barbieri R, Maignien L, Templer SP, Haas de H, Hebbeln D, Frank N, Larmagnat S, Stadnitskaia A, Stivaletta N, Weering van T, Zhang Y, Hamoumi N, Cnudde V, Duyck P, Henriet J-P, The MiCROSYSTEMS MD 169 shipboard party (2011) Cold-water coral mounds on the Penduick Escarpment, Gulf of Cadiz: the MiCROSYSTEMS project approach. Mar Geol 282:102–117. doi:10.1016/j.margeo.2010.08.012Google Scholar
  251. Rooij van D, Blamart D, Richter T, Wheeler A, Kozachenko M, Henriet J-P (2007) Quaternary sediment dynamics in the Belgica mound province, Porcupine Seabight: ice-rafting events and contour current processes. Int J Earth Sci 96:121–140. doi:10.1007/s00531-006-0086-6Google Scholar
  252. Rothwell RG (1989) Minerals and mineraloids in marine sediments: an optical identification guide. Elsevier Applied Science, LondonGoogle Scholar
  253. Rothwell RG, Hoogakker B, Thomson J, Croudace IW, Frenz M (2006) Turbidite emplacement on the southern Balearic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stages 1–3: an application of ITRAX XRF scanning of sediment cores to lithostratigraphic analysis. In: Rothwell RG (ed) New Techniques in Sediment Core Analysis. Geol Soc Spec Publ 267:79–98. doi:10.1144/ GSL.SP.2006.267.01.06Google Scholar
  254. Rutten A, De Lange GJ, Ziveri P, Thomson J, Van Santvoort PJM, Colley S, Corselli C (2000) Recent terrestrial and carbonate fluxes in the pelagic eastern Mediterranean: a comparison between sediment trap and surface sediment. Palaeogeogr Palaeoclimatol Palaeoecol 158:197–213Google Scholar
  255. Sangiorgi F, van Soelen EE, Spofforth DJA, Pälike H, Stickley CE, John KS, Koç N, Schouten S, Sinninghe Damsté JS, Brinkhuis H (2008) Cyclicity in the middle Eocene central Arctic Ocean sediment record: orbital forcing and environmental response. Paleoceanography 23:PA1S08. doi:10.1029/2007PA001487Google Scholar
  256. Sarnthein M, Thiede J, Pflaumann U, Erlenkeuser H, Futterer D, Koopmann B, Lange H, Seibold E (1982) Atmospheric and oceanic circulation patterns off Northwest Africa during the past 25 million years. In: von Rad U, Hinz K, Sarnthein M, Seibold E (eds) Geology of the Northwest African continental margin. Springer, Berlin, pp 584–604Google Scholar
  257. Schott W (1935) Die Foraminiferen in dem äquatorialen Teil der Atlantischen Ozeans. Wiss Ergeb Dtsch Atl Exped “Meteor” 1925–27 3(3):43–134Google Scholar
  258. Schütz L, Rahn KA (1982) Trace element concentrations in erodible soil. Atmos Environ 16:171–176. doi:10.1016/0004-6981(82)90324-9Google Scholar
  259. Scourse JD, Furze MFA (2001) A critical review of the glaciomarine model for Irish Sea deglaciation: evidence from southern Britain, the Celtic shelf and adjacent continental slope. J Quat Sci 16:419–434Google Scholar
  260. Seaman A (2000) Analysis depth for µ-EDXRF methods, EDAX Eagle µ-Probe Application NoteGoogle Scholar
  261. Seeberg-Elverfeldt I, Lange CB, Pätzold J, Kuhn G (2005) Laminae type and possible mechanisms for the formation of laminated sediments in the Shaban Deep, northern Red Sea. Ocean Sci 1:113–126Google Scholar
  262. Shaw TJ, Gieskes JM, Jahnke RA (1990) Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochim Cosmochim Acta 54:1233–1246Google Scholar
  263. Shimmield G, Derrick S, Mackensen A, Grobe H, Pudsey C (1994) The history of barium, biogenic silica and organic carbon accumulation in the Weddell Sea and Antarctic Ocean over the last 150,000 years. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds) Carbon cycling in the glacial ocean: constraints on the ocean’s role in global chage, Springer, pp 555–574Google Scholar
  264. Siani G, Colin C, Michel E, Carel M, Richter T, Kissel C, Dewilde F (2010) Late glacial to Holocene terrigenous sediment record in the Northern Patagonian margin: Paleoclimate implications. Palaeogeogr Palaeoclimatol Palaeoecol 297:26–36. doi:10.1016/j.palaeo.2010.07.011Google Scholar
  265. Sirocko F, Garbe-Schonberg D, McIntyre A, Mol¢no B (1996) Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science 272:526–529Google Scholar
  266. Sluijs A, Bijl PK, Schouten S, Röhl U, Reichert G-J, Brinkhuis H (2011) Southern Ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum. Clim Past 7:47–61. ( doi:10.5194/cp-7-47-2011Google Scholar
  267. Sluijs A, Röhl U, Schouten S, Brumsack H-J, Sangiorgi F, Sinninghe Damsté JS, Brinkhuis H (2008) Arctic late Paleocene-early Eocene paleoenvironments with special emphasis on the Paleocene-Eocene thermal maximum (Lomonosov Ridge, Integrated Ocean Drilling Program, Expedition 302). Paleoceanography 23:PA1S11. doi:10.1029/2007PA001495Google Scholar
  268. Sluijs A, Schouten S, Donders TH, Schoon PL, Röhl U, Reichart G-J, Sangiorgi F, Kim J-H, Sinninghe Damsté JS, Brinkhuis H (2009) Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nat Geosci 2:777–780. doi:10.1038/ngeo668Google Scholar
  269. Smirnov AV, Tarduno JA (2000) Low-temperature magnetic properties of pelagic sediments (Ocean Drilling Program Site 805 C): tracers of maghemitization and magnetic mineral reduction. J Geophys Res Solid Earth 105:16457–16471Google Scholar
  270. Solignac S, Seidenkrantz M-S, Jessen C, Kuijpers A, Gunvald AK, Olsen J (2011) Late-Holocene sea-surface conditions offshore Newfoundland based on dinoflagellate cysts. Holocene 21:539–552. doi:10.1177/0959683610385720Google Scholar
  271. Soulet G, Ménot G, Garreta V, Rostek F, Zaragosi S, Lericolais G, Bard E (2011) Black Sea ‘Lake’ reservoir age evolution since the Last Glacial—Hydrologic and climatic implications. Earth Planet Sci Lett 308:245–258. doi:10.1016/j.epsl.2011.06.002Google Scholar
  272. Sparrenbom CJ, Bennike O, Björck S, Lambeck K (2006) Holocene relative sea-level changes in the Qaqortoq area, southern Greenland. Boreas 35:171–187. doi:10.1111/j.1502-3885.2006.tb01148.xGoogle Scholar
  273. Spofforth DJA, Pälike H, Green D (2008) Paleogene record of elemental concentrations in sediments from the Arctic Ocean obtained by XRF analyses. Paleoceanography 23:PA1S09. doi:10.1029/2007PA001489Google Scholar
  274. Stuut J-B, Zabel M, Ratmeyer V, Helmke P, Schefuβ E, Lavik G, Schneider R (2005) Provenance of present-day eolian dust collected off NW Africa. J Geophys Res 110:D04202. doi:10.1029/2004jd005161Google Scholar
  275. Stuut J-B, Kasten S, Lamy F, Hebbeln D (2007) Sources and modes of terrigenous sediment input to the Chilean continental slope. Quat Inter 161:67–76. doi:10.1016/j.quaint.2006.10.041Google Scholar
  276. Széréméta N, Bassinot F, Balut Y, Labeyrie L, Pagel M (2004) Oversampling of sedimentary series collected by giant piston corer: evidence and corrections based on 3.5-kHz chirp profiles. Palaeoceanography 19:PA1005. doi:10.1029/2002PA000795Google Scholar
  277. Tallmadge JA, Butt JB, Solomon HJ (1964) Minerals from sea salt. Ind Eng Chem 56:44–65Google Scholar
  278. Teodoru CR, Friedl G, Friedrich J, Roehl U, Sturm M, Wehrli B (2007) Spatial distribution and recent changes in carbon, nitrogen and phosphorus accumulation in sediments of the Black Sea. Mar Chem 105:52–69. doi:10.1016/j.marchem.2006.12.013Google Scholar
  279. Thomson J, Higgs NC, Jarvis I, Hydes DJ, Colley S, Wilson TRS (1986) The behaviour of manganese in Atlantic carbonate sediments. Geochim Cosmochim Acta 50:1807–1818Google Scholar
  280. Thomson J, Higgs NC, Croudace IW, Colley S, Hydes DJ (1993) Redox zonation of elements at an oxic post-oxic boundary in deep-sea sediments. Geochim Cosmochim Acta 57:579–595Google Scholar
  281. Thomson J, Higgs NC, Colley S (1996) Diagenetic redistributions of redox-sensitive elements in northeast Atlantic glacial/interglacial transition sediments. Earth Planet Sci Lett 139:365–377Google Scholar
  282. Thomson J, Crudeli D, De Lange G, Slomp CP, Erba E, Corselli C, Calvert SE (2004) Florisphaera profunda and the origin and diagenesis of carbonate phases in eastern Mediterranean sapropel units. Paleoceanography 19:PA3003. doi:10.1029/2003PA000976Google Scholar
  283. Thomson J, Croudace IW, Rothwell RG (2006) A geochemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units. In: Rothwell RG (ed) New Techniques in Sediment Core Analysis. Geol Soc Spec Publ 267:65–77. doi:10.1144/ GSL.SP.2006.267.01.05Google Scholar
  284. Tisserand A, Malaizé B, Jullien E, Zaragosi S, Charlier K, Grousset F (2009) African monsoon enhancement during the penultimate glacial period (MIS 6.5–170 ka) and its atmospheric impact. Paleoceanography 24:PA2220. doi:10.1029/2008PA001630Google Scholar
  285. Tjallingii R (2006) Application and quality of X-Ray fluorescence core scanning in reconstructing late Pleistocene NW African continental margin sedimentation patterns and paleoclimate variations. PhD Thesis Univ Bremen, pp 114Google Scholar
  286. Tjallingii R, Röhl U, Kölling M, Bickert T (2007) Influence of the water content on X-ray fluorescence core scanning measurements in soft marine sediments. Geochem Geophys Geosyst 8:Q02004. doi:10.1029/2006GC001393Google Scholar
  287. Tjallingii R, Stattegger K, Wetzel A, Van Phach P (2010) Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise. Quat Sci Rev 29:1432–1444. doi:10.1016/j.quascirev.2010.02.022Google Scholar
  288. Vare LL, Massé G, Gregory TR, Smart CW, Belt ST (2009) Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quat Sci Rev 28:1354–1366. doi:10.1016/j.quascirev.2009.01.013Google Scholar
  289. Vidal L, Bickert T, Wefer G, Röhl U (2002) Late Miocene stable isotope stratigraphy of SE Atlantic ODP Site 1085: relation to Messinian events. Mar Geol 180:71–85. doi:10.1016/S0025-3227(01)00206-7Google Scholar
  290. Wang M, Zheng H, Xie X, Fan D, Yang S, Zhoa Q, Wang K (2011) A 600-year flood history in the Yangtze River drainage: comparison between a subaqueous delta and historical records. Chin Sci Bull 56:188–195. doi: 10.1007/s11434-010-4212-2Google Scholar
  291. Wehausen R, Brumsack H-J (2000) Chemical cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments. Palaeogeogr Palaeoclimatol Palaeoecol 158:325–352Google Scholar
  292. Weijden van der CH (2002) Pitfalls of normalisation of marine geochemical data using a common divisor. Mar Geol 184:167–187Google Scholar
  293. Weiss H, Courty MA, Wetterstrom W, Guichard F, Senior L, Meadow R, Curnow A (1993) The genesis and collapse of third millennium North Mesopotamian civilization. Science 261:995–1004Google Scholar
  294. Weltje GJ, Tjallingii R (2008) Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet Sci Lett 274:423–438. doi:10.1016/j.epsl.2008.07.054Google Scholar
  295. Weltje GJ, von Eynatten H (2004) Quantitative provenance analysis of sediments: review and outlook. Sediment Geol 171:1–11Google Scholar
  296. West S, Jansen JHF, Stuut J-B (2004) Surface water conditions in the Northern Benguela Region during the last 450 ky reconstructed from assemblages of planktonic foraminifera. Mar Micropaleontol 51:321–344. doi:10.1016/j.marmicro.2004.01.004Google Scholar
  297. Westerhold T (2003) The Middle Miocene Carbonate Crash: relationship to Neogene Changes in Ocean Circulation and Global Climate. Dissertation, University of BremenGoogle Scholar
  298. Westerhold T, Bickert T, Röhl U (2005) Middle to late Miocene oxygen isotope stratigraphy of ODP Site 1085 (SE Atlantic): new constraints on Miocene climate variability and sea-level fluctuations. Palaeogeogr Palaeoclimatol Palaeoecol 217:205–222. doi:10.1016/j.palaeo.2004.12.001Google Scholar
  299. Westerhold T, Röhl U, Laskar J, Raffi I, Bowles J, Lourens J, Zachos J (2007) On the duration of Magnetochrons C24r and C25n, and the timing of early Eocene global warming events: implications from the ODP Leg 208 Walvis Ridge depth transect. Paleoceanography 22:PA2201. doi:10.1029/2006PA001322Google Scholar
  300. Westerhold T, Röhl U, Raffi I, Fornaciari E, Monechi S, Reale V, Bowles J, Evans HF (2008) Astronomical calibration of the Paleocene time. Palaeogeogr Palaeoclimatol Palaeoecol 257:377–403. doi:10.1016/j.palaeo.2007.09.016Google Scholar
  301. Westerhold T, Röhl U (2009) High resolution cyclostratigraphy of the early Eocene—new insights into the origin of the Cenozoic cooling trend. Clim Past 5:309–327. ( Scholar
  302. Westerhold T, Röhl U, McCarren HK, Zachos JC (2009) Latest on the absolute age of the Paleocene-Eocene Thermal Maximum (PETM): new insights from exact stratigraphic position of key ash layers + 19 and -17. Earth Planet Sci Lett 287:412–419. doi:10.1016/j.epsl.2009.08.027Google Scholar
  303. Wolters S, Zeller M, Bungenstock F (2010) Early Holocene environmental history of sunken landscapes: pollen, plant macrofossil and geochemical analyses from the Borkum Riffgrund, southern North Sea. Int J Earth Sci 99:1707–1719. doi:10.1007/s00531-009-0477-6Google Scholar
  304. Xu J, Holbourn A, Kuhnt W, Jian Z, Kawamura H (2008) Changes in the thermocline structure of the Indonesian outflow during Terminations I and II. Earth Planet Sci Lett 273:152–162Google Scholar
  305. Yarincik KM, Murray RW, Peterson LC (2000) Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: results from Al/Ti and K/Al. Paleoceanography 15:210–228Google Scholar
  306. Zabel M, Schneider R, Wagner T, Adegbie AT, de Vries U, Kolonic S (2001) Late Quaternary climate changes in Central Africa as inferred from terrigenous input to the Niger Fan. Quat Res 56:207–217Google Scholar
  307. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686–693Google Scholar
  308. Zachos JC, McCarren H, Murphy B, Röhl U, Westerhold T (2010) Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: implications for the origin of hyperthermals. Earth Planet Sci Lett 299:242–249. doi:10.1016/j.epsl.2010.09.004Google Scholar
  309. Zaragosi S, Bourillet J-F, Eynaud F, Toucanne S, Denhard B, Van Toer A, Lanfumey V (2006) The impact of the last European deglaciation on the deep-sea turbidite systems of the Celtic-Armorican margin (Bay of Biscay). Geo Mar Lett 26:17–329. doi:10.1007/s00367-006-0048-9Google Scholar
  310. Zarriess M, Johnstone H, Prange M, Steph S, Groeneveld J, Mulitza S, Mackensen A (2011) Bipolar seesaw in the northeastern tropical Atlantic during Heinrich stadials. Geophys Res Lett 38:L04706. doi:10.1029/2010GL046070Google Scholar
  311. Zarriess M, Mackensen A (2010) The tropical rainbelt and productivity changes off northwest Africa: a 31,000-year high-resolution record. Mar Micropaleontol 76:76–91. doi:10.1016/j.marmicro.2010.06.001Google Scholar
  312. Ziegler M, Jilbert T, De Lange GJ, Lourens LJ, Reichart G-J (2008) Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochem Geophys Geosyst 9:Q05009. doi:10.1029/2007GC001932Google Scholar
  313. Ziegler M, Lourens LJ, Tuenter E, Reichart GJ (2009) Anomalously high Arabian Sea productivity conditions during MIS 13. Clim Past Discuss 5:1989–2018. ( Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.National Oceanography CentreSouthamptonUK
  2. 2.Ocean and Earth ScienceNational Oceanography Centre, University of Southampton, Waterfront CampusSouthamptonUK

Personalised recommendations