Sets, Truth, and Recursion

Chapter
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 36)

Abstract

We discuss some philosophical aspects of an intensional set theory based on an axiomatic truth theory. This set theory gains its justification from natural truth axioms combined with standard recursion-theoretic operations.

Keywords

Axiomatic truth theories Applicative theories Intensional set theory 

References

  1. Aczel, P. (1980) Frege structures and the notion of proposition, truth and set. In J. Barwise, H. Keisler, & K. Kunen (eds.), The Kleene symposium (pp. 31–59). Amsterdam: North-Holland.Google Scholar
  2. Beeson, M. (1985). Foundations of constructive mathematics. Ergebnisse der Mathematik und ihrer Grenzgebiete; 3.Folge (Bd. 6). Berlin: Springer.Google Scholar
  3. Cantini, A. (1990). A theory of formal truth arithmetically equivalent to \(\mbox{ID}_1\). Journal of Symbolic Logic, 55(1), 244–259.CrossRefGoogle Scholar
  4. Cantini, A. (1996). Logical frameworks for truth and abstraction, vol. 135 of Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland.Google Scholar
  5. Cantini, A. (2015). On stratified truth. In D. Achourioti, K. Fujimoto, H. Galinon, & J. Martinez (Eds.), Unifying the philosophy of truth, volume 36. Logic, epistemology and the unity of science. Dordrecht: Springer.Google Scholar
  6. Eberhard, S., & Strahm, T. (2015). Unfolding feasible arithmetic and weak truth. In D. Achourioti, K. Fujimoto, H. Galinon, & J. Martinez (Eds.), Unifying the philosophy of truth, volume 36. Logic, epistemology and the unity of science. Dordrecht: Springer.Google Scholar
  7. Feferman, S. (1975). A language and axioms for explicit mathematics. In J. Crossley (ed.) Algebra and logic, vol. 450 of Lecture Notes in Mathematics (pp. 87–139). Berlin: Springer.Google Scholar
  8. Feferman,S. (1979). Constructive theories of functions and classes. In M. Boffa, D. van Dalen, & K. McAloon (eds.) Logic colloquium 78 (pp. 159–224). Amsterdam: North-Holland.Google Scholar
  9. Feferman, S. & Jäger, G. (1993). Systems of explicit mathematics with non-constructive μ-operator. Part I. Annals of Pure and Applied Logic, 65(3), 243–263.CrossRefGoogle Scholar
  10. Feferman, S. & Jäger, G. (1996). Systems of explicit mathematics with non-constructive μ-operator. Part II. Annals of Pure and Applied Logic, 79, 37–52.CrossRefGoogle Scholar
  11. Feferman, S., Friedman, H. M., Maddy, P., & Steel, J. R. (2000). Does mathematics need new axioms?Bulletin of Symbolic Logic, 6(4), 401–446.CrossRefGoogle Scholar
  12. Flagg, R. & Myhill, J. (1987a). An extension of frege structures. In D. Kueker, E. Lopez-Escobar, & C. Smith (eds.), Mathematical logic and theoretical computer science (pp. 197–217). New York: Dekker.Google Scholar
  13. Flagg, R. & Myhill, J. (1987b). Implication and analysis in classical frege structures. Annals of Pure and Applied Logic, 34, 33–85.Google Scholar
  14. Frege, G. (1893). Grundgesetze der Arithmetik; begriffschriftlich abgeleitet, vol. 1. Jena: Hermann Pohle.Google Scholar
  15. Frege, G. (1903). Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, vol. 2. Jena: Hermann Pohle. Reprinted together with vol. 1, Hildesheim: Olms. 1966.Google Scholar
  16. Friedman, H., & Sheard, M. (1982). An axiomatic approach to self-referential truth. Annals of Pure and Applied Logic, 33, 1–21.CrossRefGoogle Scholar
  17. Fujimoto, K. (2011). Autonomous progression and transfinite iteration of self-applicable truth. Journal of Symbolic Logic, 76(3), 914–945.CrossRefGoogle Scholar
  18. Fujimoto, K. (2012). Classes and truths in set theory. Annals of Pure and Applied Logic, 163, 1484–1523.CrossRefGoogle Scholar
  19. Glaß, T. & Strahm, T. (1996). Systems of explicit mathematics with non-constructive μ-operator and join. Annals of Pure and Applied Logic, 82(2), 193–219.CrossRefGoogle Scholar
  20. Halbach, V. (2009). Axiomatic theories of truth. In E. N. Zalta (ed.), The stanford encyclopedia of philosophy. Winter 2009 edition. http://plato.stanford.edu/entries/truth-axiomatic/.
  21. Halbach, V. & Horsten, L. (2015). Norms for theories of reflexive truth. In D. Achourioti, K. Fujimoto, H. Galinon, & J. Martinez (Eds.), Unifying the philosophy of truth, volume 36. Logic, epistemology and the unity of science. Dordrecht: Springer.Google Scholar
  22. Hilbert, D. (1918). Axiomatisches Denken. Mathematische Annalen, 78(3/4), 405–415.Google Scholar
  23. Jäger, G., Kahle, R., Setzer, A., & Strahm, T. (1999a). The proof-theoretic analysis of transfinitely iterated fixed point theories. Journal of Symbolic Logic, 64(1), 53–67.Google Scholar
  24. Jäger, G., Kahle, R., & Strahm, T. (1999b). On applicative theories. In A. Cantini, E. Casari, & P. Minari (eds.) Logic and foundation of mathematics. (pp. 88–92). Dordrecht: Kluwer.Google Scholar
  25. Jäger, G. & Strahm, T. (1995). Totality in applicative theories. Annals of Pure and Applied Logic, 74, 105–120.CrossRefGoogle Scholar
  26. Jäger, G. & Strahm, T. (2002). The proof-theoretic strength of the Suslin operator in applicative theories. In W. Sieg, R. Sommer, & C. Talcott (eds.) Reflections on the foundations of mathematics: Essays in honor of Solomon Feferman. Vol. 15 of Lecture Notes in Logic (pp. 270–292). ASL and AK Peters.Google Scholar
  27. Jäger, G., Kahle, R., & Strahm, T. (1999b). On applicative theories. In A. Cantini, E. Casari, & P. Minari (eds.) Logic and foundation of mathematics. (pp. 88–92). Kluwer. Dordrecht:Google Scholar
  28. Kahle, R. (1999). Frege structures for partial applicative theories. Journal of Logic and Computation, 9(5), 683–700.CrossRefGoogle Scholar
  29. Kahle, R. (2001). Truth in applicative theories. Studia Logica, 68(1), 103–128.CrossRefGoogle Scholar
  30. Kahle, R. (2003). Universes over Frege structures. Annals of Pure and Applied Logic, 119(1–3), 191–223.CrossRefGoogle Scholar
  31. Kahle, R. (2007). The applicative realm volume 40, of Textos de Matemática. Coimbra: Departamento de Matemática.. CoimbraGoogle Scholar
  32. Kahle, R. (2009). The universal set—a (never fought) battle between philosophy and mathematics. In O. Pombo & Á. Nepomuceno (eds.), Lógica e Filosofia da Ciência, vol. 2 of Colecção Documenta (pp. 53–65). Lisboa: Centro de Filosofia das Ciências da Universidade de Lisboa.Google Scholar
  33. Kahle, R. (2011). The universal set and diagonalization in Frege structures. Review of Symbolic Logic, 4(2), 205–218.CrossRefGoogle Scholar
  34. Kahle, R. (2015). Axioms as hypotheses. In T. Piecha & P. Schroeder-Heister (Eds.), Proceedings of the Conference on Hypothetical Reasoning, 23–24 August 2014 (pp. 47–54). Tübingen: University of Tübingen.Google Scholar
  35. Leigh, G. & Rathjen, M. (2010). An ordinal analysis for theories of self-referential truth. Archive for Mathematical Logic, 49, 213–247.CrossRefGoogle Scholar
  36. Maddy, P. (1997). Naturalism in mathematics. Oxford: Clarendon.Google Scholar
  37. Schlüter, A. (1995). A theory of rules for enumerated classes of functions. Archive for Mathematical Logic, 34, 47–63.CrossRefGoogle Scholar
  38. Scott, D. (1975). Combinators and classes. In refedC. Böhm (ed.), λ-Calculus and computer science theory. Vol. 37 of Lecture Notes in Computer Science. (pp. 1–26). Berlin: Springer.Google Scholar
  39. Troelstra, A. & van Dalen, D. (1988). Constructivism in mathematics, vol. II. Amsterdam: North Holland.Google Scholar
  40. refauvan Fraassen, B. (1968). Presupposition, implication and self-reference. Journal of Philosophy, 65, 135–152.Google Scholar
  41. van Fraassen, B. (1970). Inference and self-reference. Synthese, 21, 425–438.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.CMA and DM, FCTUniversidade Nova de LisboaLisboaPortugal

Personalised recommendations